精英家教網 > 高中數學 > 題目詳情
已知二次函數y=f(x)的圖象如圖所示:
(1)求函數y=f(x)的解析式;
(2)根據圖象寫出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有兩個不相等的實數根,根據函數圖象及變換知識,求k的取值的集合.
解:(1)如圖,可設f(x)=a(x﹣2)2+2,(a<0)
又函數圖象過(0,1)點,
故f(1)=0,
代入得:a=﹣2
∴f(x)=﹣2(x﹣2)2+2=﹣2x2+8x﹣6
(2)根據圖象易得不等式ax2+bx+c>0的解集為{x|1<x<3}
(3)通過圖象變換將函數的圖象下方的部分翻折到上方,
由此可得:當{k|k>2或k=0}時,方程|f(x)|=k有兩個不相等的實數根
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數y=f(x)(x∈R)的圖象過點(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)圖象的頂點是(-1,3),又f(0)=4,一次函數y=g(x)的圖象過(-2,0)和(0,2).
(1)求函數y=f(x)和函數y=g(x)的解析式;
(2)求關于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)的圖象關于直線x=2對稱,且在x軸上截得的線段長為2.若f(x)的最小值為-1,求:
(1)函數f(x)的解析式;
(2)函數f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)的圖象如圖所示:
(1)求函數y=f(x)的解析式;
(2)根據圖象寫出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有兩個不相等的實數根,根據函數圖象及變換知識,求k的取值的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)=x2+bx+c的圖象過點(1,13),且函數y=f(x-
12
)
是偶函數.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函數g(x)在[t,2]上的最大值和最小值;
(3)函數y=f(x)的圖象上是否存在這樣的點,其橫坐標是正整數,縱坐標是一個完全平方數?如果存在,求出這樣的點的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案