設(shè)橢圓C:(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF垂直的直線(xiàn)分別交橢圓C與x軸正半軸于點(diǎn)P、Q,且.
⑴求橢圓C的離心率;
⑵若過(guò)A、Q、F三點(diǎn)的圓恰好與直線(xiàn)l:相切,求橢圓C的方程.
解⑴設(shè)Q(x0,0),由F(-c,0)A(0,b)知
設(shè)P(x1,y1),由, 得 2分 因?yàn)辄c(diǎn)P在橢圓上,所以 4分 整理得2b2=3ac,即2(a2-c2)=3ac,,故橢圓的離心率e= 6分 ⑵由⑴知2b2=3ac,得 7分 由,得 9分 于是F(-a,0)Q, △AQF的外接圓圓心為(a,0),半徑r=|FQ|=a 11分 所以,解得a=2,∴c=1,b=,所求橢圓方程為 13分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題
設(shè)橢圓C:+=1(a>b>0)過(guò)點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為的直線(xiàn)被C所截線(xiàn)段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題
設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線(xiàn)l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿(mǎn)足k1+k2=,求直線(xiàn)l的方程;
(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線(xiàn)l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿(mǎn)足k1+k2=,求直線(xiàn)l的方程;
(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com