設(shè)橢圓C:(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF垂直的直線(xiàn)分別交橢圓C與x軸正半軸于點(diǎn)P、Q,且

⑴求橢圓C的離心率;

⑵若過(guò)A、Q、F三點(diǎn)的圓恰好與直線(xiàn)l:相切,求橢圓C的方程.

答案:
解析:

  解⑴設(shè)Q(x0,0),由F(-c,0)A(0,b)知

  

  設(shè)P(x1,y1),由,

  得      2分

  因?yàn)辄c(diǎn)P在橢圓上,所以      4分

  整理得2b2=3ac,即2(a2-c2)=3ac,,故橢圓的離心率e   6分

  ⑵由⑴知2b2=3ac,得            7分

  由,得                 9分

  于是F(-a,0)Q

  △AQF的外接圓圓心為(a,0),半徑r=|FQ|=a   11分

  所以,解得a=2,∴c=1,b=,所求橢圓方程為  13分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓C:+=1(a>b>0)過(guò)點(diǎn)(0,4),離心率為.

(1)C的方程;

(2)求過(guò)點(diǎn)(3,0)且斜率為的直線(xiàn)被C所截線(xiàn)段的中點(diǎn)坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,PC上的點(diǎn),PF2F1F2,PF1F2=30°,C的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:解答題

設(shè)橢圓C:(a>b>0)的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4,
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C上一動(dòng)點(diǎn)P(x0,y0)關(guān)于直線(xiàn)y=2x的對(duì)稱(chēng)點(diǎn)為P1(x1,y1),求3x1-4y1的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:=1(a>b>0)過(guò)點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線(xiàn)l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿(mǎn)足k1+k2=,求直線(xiàn)l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:=1(a>b>0)過(guò)點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線(xiàn)l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿(mǎn)足k1+k2=,求直線(xiàn)l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.

查看答案和解析>>

同步練習(xí)冊(cè)答案