A. | $y=\frac{1}{x}$ | B. | y=1g|x| | C. | y=cosx | D. | y=x2+2x |
分析 根據(jù)偶函數(shù)的定義判斷各個(gè)選項(xiàng)中的函數(shù)是否為偶函數(shù),再看函數(shù)是否在區(qū)間(0,+∞)上單調(diào)遞減,從而得出結(jié)論.
解答 解:對(duì)于A:函數(shù)在(0,+∞)遞減,不合題意;
對(duì)于B:y=lg|x|是偶函數(shù)且在(0,+∞)遞增,符合題意;
對(duì)于C:y=cosx是周期函數(shù),在(0,+∞)不單調(diào),不合題意;
對(duì)于D:此函數(shù)不是偶函數(shù),不合題意;
故選:B.
點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性的判斷,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{π}{12},\frac{π}{6}}]$ | B. | $[{\frac{π}{6},\frac{π}{2}}]$ | C. | $[{\frac{π}{12},\frac{π}{3}}]$ | D. | $[{\frac{π}{6},\frac{π}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$ | B. | $f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$ | C. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$ | D. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 方程組有唯一解 | B. | 方程組有唯一解或有無(wú)窮多解 | ||
C. | 方程組無(wú)解或有無(wú)窮多解 | D. | 方程組有唯一解或無(wú)解 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com