日需求量 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 9 | 11 | 15 | 10 | 5 |
分析 (1)根據(jù)題意分段求解得出當(dāng)1≤n≤10時(shí),y利潤(rùn),當(dāng)n>10時(shí),y利潤(rùn),
(2)運(yùn)用表格的數(shù)據(jù)求解:頻數(shù)9天,380;頻數(shù)11天,440;頻數(shù)9,500;頻數(shù)5,440,得出當(dāng)天的利潤(rùn)在區(qū)間[400,500]有30天,即可求解概率.
解答 解:(1)當(dāng)1≤n≤10時(shí),y利潤(rùn)=50n+(10-n)×(-10)=60n-100,
當(dāng)n>10時(shí),y利潤(rùn)=50×10+(n-10)×30=200+30n,
所以函數(shù)解析式y(tǒng)利潤(rùn)=$\left\{\begin{array}{l}{200+30n,n>10}\\{60n-100,1≤n≤10}\end{array}\right.$,
(2)∵日需求量為8,頻數(shù)9天,利潤(rùn)為50×8-10×2=380,
日需求量為9,頻數(shù)11天,利潤(rùn)為50×9-10×1=440,
日需求量為10,頻數(shù)15,利潤(rùn)為50×10=500,
日需求量為11,頻數(shù)10,利潤(rùn)為50×10+30=530,
日需求量為12,頻數(shù)5,利潤(rùn)為50×10+30×2=560,
∴當(dāng)天的利潤(rùn)在區(qū)間[400,500]有11+15=26天,
故當(dāng)天的利潤(rùn)在區(qū)間[400,500]的概率為$\frac{13}{25}$.
點(diǎn)評(píng) 本題考查了運(yùn)用概率知識(shí)求解實(shí)際問(wèn)題的利潤(rùn)問(wèn)題,仔細(xì)閱讀題意,得出有用的數(shù)據(jù),理清關(guān)系,正確代入數(shù)據(jù)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{5}{2}$,-$\frac{9}{4}$) | B. | (-$\frac{9}{4}$,-1) | C. | (-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1) | D. | (-$\frac{5}{2}$,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$-1 | B. | $\sqrt{2}$-1 | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{2\sqrt{2}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x2-2y2=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1 | C. | x2-y2=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com