分析 (Ⅰ)以A為坐標(biāo)原點(diǎn),以AC、AB、AA1所在直線分別為x、y、z軸建系,通過平面ABCD的一個(gè)法向量與$\overrightarrow{MN}$的數(shù)量積為0,即得結(jié)論;
(Ⅱ)通過計(jì)算平面ACD1的法向量與平面ACB1的法向量的夾角的余弦值及平方關(guān)系即得結(jié)論;
(Ⅲ)通過設(shè)$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$,利用平面ABCD的一個(gè)法向量與$\overrightarrow{NE}$的夾角的余弦值為$\frac{1}{3}$,計(jì)算即可.
解答 (Ⅰ)證明:如圖,以A為坐標(biāo)原點(diǎn),以AC、AB、AA1所在直線分別為x、y、z軸建系,
則A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),
A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2),
又∵M(jìn)、N分別為B1C、D1D的中點(diǎn),∴M(1,$\frac{1}{2}$,1),N(1,-2,1).
由題可知:$\overrightarrow{n}$=(0,0,1)是平面ABCD的一個(gè)法向量,$\overrightarrow{MN}$=(0,-$\frac{5}{2}$,0),
∵$\overrightarrow{n}$•$\overrightarrow{MN}$=0,MN?平面ABCD,∴MN∥平面ABCD;
(Ⅱ)解:由(I)可知:$\overrightarrow{A{D}_{1}}$=(1,-2,2),$\overrightarrow{AC}$=(2,0,0),$\overrightarrow{A{B}_{1}}$=(0,1,2),
設(shè)$\overrightarrow{m}$=(x,y,z)是平面ACD1的法向量,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{A{D}_{1}}=0}\\{\overrightarrow{m}•\overrightarrow{AC}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x-2y+2z=0}\\{2x=0}\end{array}\right.$,
取z=1,得$\overrightarrow{m}$=(0,1,1),
設(shè)$\overrightarrow{n}$=(x,y,z)是平面ACB1的法向量,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=0}\\{\overrightarrow{n}•\overrightarrow{AC}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{y+2z=0}\\{2x=0}\end{array}\right.$,
取z=1,得$\overrightarrow{n}$=(0,-2,1),
∵cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=-$\frac{\sqrt{10}}{10}$,∴sin<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\sqrt{1-(-\frac{\sqrt{10}}{10})^{2}}$=$\frac{3\sqrt{10}}{10}$,
∴二面角D1-AC-B1的正弦值為$\frac{3\sqrt{10}}{10}$;
(Ⅲ)解:由題意可設(shè)$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$,其中λ∈[0,1],
∴E=(0,λ,2),$\overrightarrow{NE}$=(-1,λ+2,1),
又∵$\overrightarrow{n}$=(0,0,1)是平面ABCD的一個(gè)法向量,
∴cos<$\overrightarrow{NE}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{NE}•\overrightarrow{n}}{|\overrightarrow{NE}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{(-1)^{2}+(λ+2)^{2}+{1}^{2}}}$=$\frac{1}{3}$,
整理,得λ2+4λ-3=0,解得λ=$\sqrt{7}$-2或-2-$\sqrt{7}$(舍),
∴線段A1E的長為$\sqrt{7}$-2.
點(diǎn)評(píng) 本題考查直線與平面平行和垂直、二面角、直線與平面所成的角等基礎(chǔ)知識(shí),考查用空間向量解決立體幾何問題的方法,考查空間想象能力、運(yùn)算能力和推理能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,5} | B. | {3,6} | C. | {2,5,6} | D. | {2,3,5,6,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?n∈N*,f(n)∉N*且f(n)>n | B. | ?n∈N*,f(n)∉N*或f(n)>n | ||
C. | ?n0∈N*,f(n0)∉N*且f(n0)>n0 | D. | ?n0∈N*,f(n0)∉N*或f(n0)>n0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com