19.定積分∫${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$$\sqrt{1+cos2x}$dx=2$\sqrt{2}$.

分析 先化簡被積函數(shù),再根據(jù)定積分的計算法則計算即可.

解答 解:$\sqrt{1+cos2x}$=$\sqrt{2co{s}^{2}x-1+1}$=$\sqrt{2}$|cosx|,
∴∫${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$$\sqrt{1+cos2x}$dx=∫${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$$\sqrt{2}$|cosx|dx=$\sqrt{2}$∫${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=$\sqrt{2}$sinx|${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$=$\sqrt{2}$(1+1)=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.

點評 本題考查了三角形函數(shù)的化簡和定積分的計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左、右焦點分別為F1,F(xiàn)2點P在雙曲線的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,雙曲線的離心率為$\sqrt{2}$,則λ=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≤3}\\{x+y≥0}\\{x-y+6≥0}\end{array}\right.$,若z=ax+y的最大值為3a+9,最小值為3a-3,則a的取值范圍是( 。
A.a≤-1B.a≥1C.-1≤a≤1D.a≥1或a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知tanα、cotα是關(guān)于x的方程2x2-2kx=3-k2的兩個方程根,π<α<$\frac{5}{4}$π,求cosα-sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與x軸負半軸交于點C,A為橢圓在第一象限的點,直線OA交橢圓于另一點B,橢圓的左焦點為F,若直線AF平分線段BC,則橢圓的離心率等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若a∈($\frac{1}{4}$,4),將函數(shù)f(x)=2x-$\frac{a}{{2}^{x}}$的圖象向右平移2個單位后得曲線C1,將函數(shù)y=g(x)的圖象向下平移2個單位后得曲線C2,C1與C2關(guān)于x軸對稱,若F(x)=$\frac{f(x)}{a}+$g(x)的最小值為m,且m>2+$\sqrt{7}$,則實數(shù)a的取值范圍是($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利用函數(shù)的圖象,求出3sin(2x+$\frac{π}{4}$)=2在x∈[-2π,2π]內(nèi)的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知α,β∈(0,$\frac{π}{2}$),sin(α-β)=-$\frac{1}{4}$,sinβ=$\frac{1}{3}$,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0)的兩個焦點為F1(-c,0),F(xiàn)2(c,0).其短軸長是2$\sqrt{3}$,原點O到過點A(a,0)和B(0,-b)兩點的直線的距離為$\frac{2\sqrt{21}}{7}$.
(I)求橢圓C的方程;
(II)若點PQ是定直線x=4上的兩個動點,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}Q}$=0,證明以PQ為直徑的圓過定點,并求定點的坐標.

查看答案和解析>>

同步練習(xí)冊答案