8.已知α,β∈(0,$\frac{π}{2}$),sin(α-β)=-$\frac{1}{4}$,sinβ=$\frac{1}{3}$,求cosα的值.

分析 由于cosα=cos(α-β+β),利用同角的三角函數(shù)的關(guān)系以及兩角和的余弦公式即可求出.

解答 解:∵α,β∈(0,$\frac{π}{2}$),sin(α-β)=-$\frac{1}{4}$,sinβ=$\frac{1}{3}$,
∴α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴cos(α-β)=$\frac{\sqrt{15}}{4}$,cosβ=$\frac{2\sqrt{2}}{3}$,
∴cosα=cos(α-β+β)=cos(α-β)cosβ-sin(α-β)sinβ=$\frac{\sqrt{15}}{4}$×$\frac{2\sqrt{2}}{3}$+$\frac{1}{4}$×$\frac{1}{3}$=$\frac{\sqrt{30}}{6}$+$\frac{1}{12}$.

點(diǎn)評(píng) 本題考查了同角的三角函數(shù)的關(guān)系以及兩角和的余弦公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求過(guò)點(diǎn)P(-1,3)且平行于直線l:$\left\{\begin{array}{l}{x=1+t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t為參數(shù))的直線的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定積分∫${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$$\sqrt{1+cos2x}$dx=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若關(guān)于x的不等式ax2+x+2>0的解為-1<x<2,則實(shí)數(shù)a的值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}滿足an+1=2an+n,n∈N+,若a3=6,則a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知方程x2+(4+i)x+4+ai=0(a∈R)有實(shí)根b,且z=a+bi.若復(fù)數(shù)ω滿足|ω-z|≤2,則而|ω|最小值等于( 。
A.2$\sqrt{2}$-2B.2C.2$\sqrt{2}$D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,已知a=$\sqrt{3}$,b=3,C=30°,則△ABC的外接圓的面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知tanα=$\frac{1}{3}$,tan(β-α)=-2,且$\frac{π}{2}$<β<π,則β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若全集U={1,2,3,4},集合M={1,2},集合N={2,3},則集合M∩∁UN=(  )
A.{1}B.{1,2}C.{1,4}D.{1,2,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案