9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左、右焦點(diǎn)分別為F1,F(xiàn)2點(diǎn)P在雙曲線的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,雙曲線的離心率為$\sqrt{2}$,則λ=2+$\sqrt{3}$.

分析 由雙曲線的定義可得,|PF1|-|PF2|=2a,|PF1|=λ|PF2|,可得|PF1|,|PF2|,再由勾股定理和離心率公式,可得
λ2-4λ+1=0,解方程可得所求值.

解答 解:由雙曲線的定義可得,|PF1|-|PF2|=2a,
|PF1|=λ|PF2|,可得|PF1|=$\frac{2aλ}{λ-1}$,
|PF2|=$\frac{2a}{λ-1}$,
由雙曲線的離心率為$\sqrt{2}$,可得c=$\sqrt{2}$a=$\sqrt{2}$b,
由$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,可得PF1⊥PF2,
即有|PF1|2+|PF2|2=4c2=8a2
即有$\frac{4{a}^{2}{λ}^{2}}{(λ-1)^{2}}$+$\frac{4{a}^{2}}{(λ-1)^{2}}$=8a2,
即為λ2-4λ+1=0,
解得λ=2+$\sqrt{3}$(2-$\sqrt{3}$舍去).
故答案為:2+$\sqrt{3}$.

點(diǎn)評(píng) 本題考查雙曲線的定義、方程和性質(zhì),注意運(yùn)用雙曲線的定義和離心率公式、勾股定理,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.不等式組$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$所表示的平面區(qū)域?yàn)镈.若直線y=a(x+1)與區(qū)域D有公共點(diǎn),則實(shí)數(shù)a的取值范圍是$(-∞,\frac{3}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.命題p:?x0∈R,不等式$cos{x_0}+{e^{x_0}}-1<0$成立,則p的否定為( 。
A.?x0∈R,不等式$cos{x_0}+{e^{x_0}}-1≥0$成立
B.?x∈R,不等式cosx+ex-1<0成立
C.?x∈R,不等式cosx+ex-1≥0成立
D.?x∈R,不等式cosx+ex-1>0成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知復(fù)數(shù)z1、z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A(1,-1)、B(3,1),則$\frac{z_2}{z_1}$=( 。
A.1+2iB.2+iC.1+3iD.3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.一個(gè)圓柱內(nèi)切一個(gè)球,這個(gè)球的直徑恰與圓柱的高相等,則圓柱的體積是球體積的$\frac{3}{2}$倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{3}$,且過(guò)點(diǎn)N($\frac{3\sqrt{2}}{2}$,2).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)若點(diǎn)M是以橢圓短軸為直徑的圓在第一象限內(nèi)的一點(diǎn),過(guò)點(diǎn)M作該圓的切線交橢圓于P,Q兩點(diǎn),橢圓的右焦點(diǎn)為F2,求|PF2|+|PM|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.圓錐的全面積為27cm2,側(cè)面展開(kāi)圖是一個(gè)半圓,則它的體積是$\frac{9\sqrt{3π}}{π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求過(guò)點(diǎn)P(-1,3)且平行于直線l:$\left\{\begin{array}{l}{x=1+t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t為參數(shù))的直線的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定積分∫${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$$\sqrt{1+cos2x}$dx=2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案