13.用反證法證明“$\sqrt{3},\sqrt{5},\sqrt{7}$不可能成等差數(shù)列”時,第一步應(yīng)假設(shè):$\sqrt{3},\sqrt{5},\sqrt{7}$成等差數(shù)列.

分析 寫出命題“$\sqrt{3},\sqrt{5},\sqrt{7}$不可能成等差數(shù)列”的否定,即為所求.

解答 解:根據(jù)用反證法證明數(shù)學命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,
而命題“$\sqrt{3},\sqrt{5},\sqrt{7}$不可能成等差數(shù)列”的否定為:“$\sqrt{3},\sqrt{5},\sqrt{7}$成等差數(shù)列”.
故答案為:$\sqrt{3},\sqrt{5},\sqrt{7}$成等差數(shù)列.

點評 本題主要考查用反證法證明數(shù)學命題的方法和步驟,求一個命題的否定,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.把正整數(shù)按圖所示的規(guī)律排序,則從2011到2013的箭頭方向依次為( 。 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓C的方程為x2+y2=4.
(1)求過點P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點P(1,2),且與圓C相交于A,B兩點,若|AB|=2$\sqrt{3}$,求直線l的方程;
(3)圓C上有一動點M(x0,y0),N(0,y0),若Q為MN的中點,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖:已知四棱錐P-ABCD,底面是邊長為6的正方形,PA=8,PA⊥面ABCD,
點M是CD的中點,點N是PB的中點,連接AM、AN、MN.
(1)求證:AB⊥MN;
(2)求二面角N-AM-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)y=x3-x2-x的單調(diào)增區(qū)間為(-∞,$\frac{1}{3}$),(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,若a2cosAsinB=b2cosBsinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,內(nèi)角A,B,C的對邊依次為a,b,c,若a=3,$b=\sqrt{3}$,$A=\frac{π}{3}$,則角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.一艘輪船由海平面上A地出發(fā)向南偏西40°的方向行駛40海里到達B地,再由B地向北偏西20°的方向行駛40海里到達C地,則A、C兩地相距40海里.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=(x2+4x+4)$\sqrt{1-2x}$的所有極值的和為4.

查看答案和解析>>

同步練習冊答案