19.若sinα=$-\frac{1}{2}$,α∈(-$\frac{π}{2}$,0),則tanα等于(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

分析 由題意和同角三角函數(shù)基本關(guān)系可得cosα,再由同角三角函數(shù)基本關(guān)系可得.

解答 解:∵sinα=$-\frac{1}{2}$,α∈(-$\frac{π}{2}$,0),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{3}}{2}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{\sqrt{3}}{3}$,
故選:D.

點(diǎn)評(píng) 本題考查同角三角函數(shù)基本關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線a,b和平面β,有以下四個(gè)命題:①若a∥β,a∥b,則b∥β;②若a∥b,b⊥β,則a⊥β;③若a⊥β,b∥β,則a⊥b;④若a?β,b∩β=B,則a與b異面.其中正確命題的是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)A(2,1),且直線l:x-2y-$\sqrt{6}$=0過橢圓C的一個(gè)焦點(diǎn).
(1)求橢圓C的方程;
(2)已知直線l′平行于直線l,且與橢圓C交于不同的兩點(diǎn)M,N,記直線AM的傾斜角為θ1,直線AN的傾斜角為θ2,試探究θ12是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,若cosAsinB+cos(B+C)sinC=0,則△ABC的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中,AA1與C1D1所成的角為90°;AA1與B1C所成的角為45°;B1C與BD所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a10=30,S5=80.
(1)求通項(xiàng)an;
(2)若Sn=242,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,過O作直線AB的垂線,垂足為P,若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=$\sqrt{3}$,∠AOB=$\frac{π}{6}$,$\overrightarrow{OP}$=x$\overrightarrow{a}$+y
$\overrightarrow$,則x-y=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.若B=2A,a=1,b=$\frac{\sqrt{6}+\sqrt{2}}{2}$,則c=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列函數(shù)的導(dǎo)數(shù):
(1)y=(ax+b)n
(2)y=xasinx-$\frac{2}{cosx}$.
(3)y=xsin2x.

查看答案和解析>>

同步練習(xí)冊(cè)答案