8.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.若B=2A,a=1,b=$\frac{\sqrt{6}+\sqrt{2}}{2}$,則c=1.

分析 利用三角函數(shù)的倍角公式以及正弦定理和余弦定理,建立方程關(guān)系進(jìn)行求解即可.

解答 解:∵B=2A,a=1,b=$\frac{\sqrt{6}+\sqrt{2}}{2}$,
∴由正弦定理得$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{2sinAcosA}$,
即cosA=$\frac{2a}$=$\frac{\frac{\sqrt{6}+\sqrt{2}}{2}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
又cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
c2=b2+a2-2abcosA=($\frac{\sqrt{6}+\sqrt{2}}{2}$)2+1-2×1×$\frac{\sqrt{6}+\sqrt{2}}{2}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$=1,
即c=1,
故答案為:1.

點評 本題主要考查解三角形的應(yīng)用,根據(jù)正弦定理和余弦定理建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A、B為△ABC的內(nèi)角,向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$$•\overrightarrow{n}$=$\frac{5}{13}$,tanA=$\frac{4}{3}$,則cosB的值為( 。
A.-$\frac{16}{65}$B.$\frac{16}{65}$C.$\frac{63}{65}$D.-$\frac{63}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若sinα=$-\frac{1}{2}$,α∈(-$\frac{π}{2}$,0),則tanα等于( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,在Rt△ABC中,∠BAC=90°,AB=2,BC=4,BD=$\frac{1}{4}$BC,E是AD的中點,則$\overrightarrow{CE}$$•\overrightarrow{AB}$的值是( 。
A.3B.$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.拋物線的頂點在原點,焦點在x軸上,其通徑的兩端與頂點連成的三角形的面積為4.則此拋物線的方程是( 。
A.y2=8$\sqrt{2}$xB.y2=±4$\sqrt{2}$xC.y2=±4xD.y2=±8$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2cosx(sinx-cosx)+1,將y=f(x)的圖象向左平移$\frac{π}{4}$個單位后得到y(tǒng)=g(x)的圖象.
(1)求y=g(x)的最小正周期;
(2)在△ABC中,角A、B、C的對邊分別是a、b、c,若g($\frac{3}{4}B$)=1,且b=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=2x2+3x-2,則$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)P是直線l上的一點,點O是到l距離為1的定點,在射線OP上取一點Q,使|OP|•|OQ|=4,求點Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知W=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,在復(fù)平面內(nèi),將1、W、W2所對應(yīng)的三點連接起來組成什么圖形?其面積是多少?

查看答案和解析>>

同步練習(xí)冊答案