A. | $\sqrt{3}$ | B. | $\frac{{3\sqrt{3}}}{2}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $\sqrt{2}$ |
分析 由題意知,當(dāng)曲線上過點(diǎn)P的切線和直線y=x+2平行時(shí),點(diǎn)P到直線y=x+2的距離最小.求出曲線對(duì)應(yīng)的函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)值等于1,可得切點(diǎn)的坐標(biāo),此切點(diǎn)到直線y=x+2的距離即為所求.
解答 解:點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),
當(dāng)過點(diǎn)P的切線和直線y=x+2平行時(shí),
點(diǎn)P到直線y=x+2的距離最小.
直線y=x+2的斜率等于1,
令y=x2-lnx的導(dǎo)數(shù)y′=2x-$\frac{1}{x}$=1,
解得x=1,或 x=-$\frac{1}{2}$(舍去),
故曲線y=x2-lnx上和直線y=x+2平行的切線經(jīng)過的切點(diǎn)坐標(biāo)(1,1),
點(diǎn)(1,1)到直線y=x+2的距離等于$\frac{|1+2-1|}{\sqrt{2}}$=$\sqrt{2}$,
故點(diǎn)P到直線y=x+2的最小距離為$\sqrt{2}$,
故選:D.
點(diǎn)評(píng) 本題考查點(diǎn)到直線的距離公式的應(yīng)用,函數(shù)的導(dǎo)數(shù)的求法及導(dǎo)數(shù)的幾何意義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | t>$\frac{3}{4}$ | B. | t≤$\frac{3}{4}$ | C. | t>-$\frac{1}{12}$ | D. | t≤-$\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日期 溫差 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com