證明:cos2(-α)=cos2α.
考點:三角函數(shù)恒等式的證明
專題:三角函數(shù)的求值
分析:直接利用誘導公式,化簡證明即可.
解答: 解:∵cos(-α)=cosα,
∴cos2(-α)=cos2α.等式成立.
點評:本題考查誘導公式的應用,恒等式的證明,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin
π
6
x,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={-1,2a+1},集合B={-4,3},且A∩B={3},則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={1,3,5},則P的子集共有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)解不等式|2+x|+|2-x|≤4;
(Ⅱ)a,b∈R+,證明:a2+b2
ab
(a+b).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐S-ABCD中,底面ABCD為平行四邊形,且AC⊥AB,O,E分別為BC,AB的中點.已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=SC=
3

(Ⅰ)求證:平面SCB⊥平面ABCD;
(Ⅱ)求三棱錐S-ACD的體積;
(Ⅲ)求二面角S-AC-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,∠ABC的對邊分別為a、b、c,且a=
3
2
b,∠B=∠C,則cosB=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x-
4
x
,當x∈[1,4]時,函數(shù)的最大值與最小值的差是( 。
A、-6B、6C、3D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bx2+cx+d有兩個極值點x1、x2,且|x1-x2|>|f(x1)-f(x2)|,且f(x1)=x1,則關于3af(x)2+2bf(x)+c=0的不同實數(shù)根有
 
個.

查看答案和解析>>

同步練習冊答案