【題目】過點(0,2)的直線l與中心在原點,焦點在x軸上且離心率為 的橢圓C相交于A、B兩點,直線 過線段AB的中點,同時橢圓C上存在一點與右焦點關于直線l對稱.
(1)求直線l的方程;
(2)求橢圓C的方程.
【答案】
(1)解:由e= = ,得 ,從而a2=2b2,c=b,
設橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上,
則x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12﹣x22)+2(y12﹣y22)=0,
=﹣
設AB中點為(x0,y0),則kAB=﹣
又(x0,y0),在直線 上, ,于是:
kAB=﹣ =﹣1,則直線l的方程為y=﹣x+2
(2)解:右焦點(b,0)關于直線l的對稱點設為:(x′,y′),
則 解得 ,
由點(2,2﹣b)在橢圓上,得4+2(2﹣b)2=2b2,b2= ,a2= ,
∴所求橢圓C的方程的方程為:
【解析】本題求直線l的方程關鍵在于求直線的斜率,根據題意設出橢圓方程,并設出點A,B及線段AB中點的坐標,利用點A,B在橢圓上得到用線段AB中點坐標表示的直線l的斜率,結合該中點在直線上即可求得直線l的斜率;(2)橢圓C上存在一點與右焦點關于直線l對稱,那么右焦點與其對稱點所在的直線與直線l互相垂直即兩直線斜率積為-1,而且右焦點與其對稱點組成的線段的中點在直線l上.
【考點精析】掌握橢圓的標準方程是解答本題的根本,需要知道橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面MDF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面MDF將幾何體ADE﹣BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數.
(Ⅰ)當時,解不等式;
(Ⅱ)若關于的方程的解集中恰有一個元素,求的取值范圍;
(Ⅲ)設,若對任意,函數在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對正整數n,記In={1,2,3,...,n},Pn={|m∈In,k∈In}.
(1)求集合P7中元素的個數;
(2)若Pn的子集A中任意兩個元素之和不是整數的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為
(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;
(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數, ,設(其中表示中的較小者).
(1)在坐標系中畫出函數的圖像;
(2)設函數的最大值為,試判斷與1的大小關系,并說明理由.
(參考數據: , , )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解適齡公務員對開放生育二胎政策的態(tài)度,某部門隨機調查了90位三十歲到四十歲的公務員,得到如下列聯表,因不慎丟失部分數據.
(1)完成表格數據,判斷是否有99%以上的把握認為“生二胎意愿與性別有關”并說明理由;
(2)已知15位有意愿生二胎的女性公務員中有兩位來自省婦聯,該部門打算從這15位有意愿生二胎的女性公務員中隨機邀請兩位來參加座談,設邀請的2人中來自省婦聯的人數為X,求X的分布列及數學期望E(X).
男性公務員 | 女性公務員 | 總計 | |
有意愿生二胎 | 15 | 45 | |
無意愿生二胎 | 25 | ||
總計 |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com