5.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y-3≥0}\\{x+2y-6≤0}\\{x>0}\end{array}}\right.$,則$\frac{y}{x}$的最大值是$\frac{1}{4}$.

分析 實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y-3≥0}\\{x+2y-6≤0}\\{x>0}\end{array}}\right.$,畫出可行域,設(shè)$\frac{y}{x}$=k,則y=kx,當(dāng)上述直線經(jīng)過(guò)點(diǎn)A時(shí),k取得最大值.

解答 解:實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y-3≥0}\\{x+2y-6≤0}\\{x>0}\end{array}}\right.$,畫出可行域:
可得B(3,0),C(6,0),A(4,1).
設(shè)$\frac{y}{x}$=k,則y=kx,
當(dāng)上述直線經(jīng)過(guò)點(diǎn)A時(shí),k取得最大值.
∴k=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查了線性規(guī)劃、直線方程、不等式的意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)的定義域是[0,1],則函數(shù)F(x)=f[log$\frac{1}{2}$(3-x)]的定義域( 。
A.{x|0≤x<1}B.{x|2≤x<$\frac{5}{2}$}C.{x|2≤x≤$\frac{5}{2}$}D.{x|2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.拋物線x2=2py(p>0)上一 點(diǎn)A($\sqrt{3}$,m)(m>1)到拋物線準(zhǔn)線的距離為$\frac{13}{4}$,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為B,O為坐標(biāo)原點(diǎn),△OAB的內(nèi)切圓與OA切于點(diǎn)E,點(diǎn)F為內(nèi)切圓上任意一點(diǎn),則$\overrightarrow{OE}•\overrightarrow{OF}$的取值范圍為$[3-\sqrt{3},3+\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=-\frac{1}{a}+\frac{2}{x}(x>0)$
(1)判斷f(x)在(0,+∞)上的增減性,并證明你的結(jié)論
(2)解關(guān)于x的不等式f(x)>0
(3)若f(x)+2x≥0在(0,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在${({\sqrt{x}+\frac{3}{x}})^n}$的展開式中,各二項(xiàng)式系數(shù)之和為64,則展開式中常數(shù)項(xiàng)為(  )
A.135B.105C.30D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=axex-(a-1)(x+1)2(其中a∈R,e為自然對(duì)數(shù)的底數(shù),e=2.718128…).
(1)若f(x)僅有一個(gè)極值點(diǎn),求a的取值范圍;
(2)證明:當(dāng)$0<a<\frac{1}{2}$時(shí),f(x)有兩個(gè)零點(diǎn)x1,x2,且-3<x1+x2<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知實(shí)數(shù)x,y滿足x2+4y2≤4,則|x+2y-4|+|3-x-y|的最大值為( 。
A.6B.12C.13D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,正方形AMDE的邊長(zhǎng)為2,B,C分別為AM,MD的中點(diǎn),在五棱錐P-ABCDE中,F(xiàn)為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于G,H兩點(diǎn).
(1)求證:AB∥FG;
(2)若PA⊥平面ABCDE,且PA=AE,求平面PCD與平面ABF所成角(銳角)的余弦值,并求線段PH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.曲線x2+(y-1)2=1(x≤0)上的點(diǎn)到直線x-y-1=0的距離最大值為a,最小值為b,則a-b的值是( 。
A.$\sqrt{2}$B.2C.$\frac{\sqrt{2}}{2}$+1D.$\sqrt{2}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案