A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)直線將平面區(qū)域分成面積相等的兩部分,得到直線過AB的中點(diǎn),求出相應(yīng)的坐標(biāo)即可得到k的值.
解答 解:作出不等式組對應(yīng)平面區(qū)如圖(三角形ABC部分),B(0,5),
∵直線y=kx+2過定點(diǎn)C(0,2),
∴C點(diǎn)在平面區(qū)域ABC內(nèi),
要使直線y=kx+2將可行域分成面積相等的兩部分,
則直線y=kx+2必過線段AB的中點(diǎn)D.
由$\left\{\begin{array}{l}{x+y=2}\\{3x+y=5}\end{array}\right.$,解得($\frac{3}{2}$,$\frac{1}{2}$),即A($\frac{3}{2}$,$\frac{1}{2}$),
∴AB的中點(diǎn)D($\frac{3}{4}$,$\frac{11}{4}$),
將D的坐標(biāo)代入直線y=kx+2得$\frac{11}{4}$=$\frac{3}{4}$k+2,
解得k=1,
故選:A
點(diǎn)評 本題主要考查二元一次不等式組表示平面區(qū)域以及三角形的面積的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x<3} | B. | {x|1<x<3} | C. | {x|2<x<3} | D. | {x|1<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2+2x+3>0 | B. | ?x∈R,x2+2x+3≥0 | C. | ?x∈R,x2+2x+3<0 | D. | ?x∈R,x2+2x+3≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | ±$\sqrt{3}$ | C. | ±$\sqrt{3}$i | D. | $\sqrt{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {0,1} | C. | {-1,0,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com