12.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,已知cos$\frac{C}{2}$=$\frac{\sqrt{5}}{3}$.
(1)求cosC的值;
(2)若acosB+bcosA=2,a=$\frac{\sqrt{5}}{2}$,求sinA的值.

分析 (1)由cos$\frac{C}{2}$=$\frac{\sqrt{5}}{3}$,利用倍角公式可得cosC=2$co{s}^{2}\frac{C}{2}$-1;
(2)由acosB+bcosA=2,利用余弦定理可得$a×\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$+b$•\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=2,解得c.再利用正弦定理即可得出.

解答 解:(1)∵cos$\frac{C}{2}$=$\frac{\sqrt{5}}{3}$,∴cosC=2$co{s}^{2}\frac{C}{2}$-1=$2(\frac{\sqrt{5}}{3})^{2}$-1=$\frac{1}{9}$;
(2)∵acosB+bcosA=2,
∴$a×\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$+b$•\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=2,化為c=2.
又∵cosC=$\frac{1}{9}$,∴sinC=$\frac{4\sqrt{5}}{9}$.
又a=$\frac{\sqrt{5}}{2}$,
由正弦定理可得:$\frac{\frac{\sqrt{5}}{2}}{sinA}$=$\frac{2}{\frac{4\sqrt{5}}{9}}$,解得sinA=$\frac{5}{9}$.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、倍角公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y+1≥0}\\{x+3y-3≥0}\\{x+y-2≤0}\end{array}\right.$,則z=$\frac{y}{x+1}$的取值范圍是( 。
A.[$\frac{1}{5}$,1]B.[$\frac{1}{6}$,$\frac{5}{4}$]C.[$\frac{1}{6}$,$\frac{3}{2}$]D.[$\frac{1}{5}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若(2-ax)(1+x)4展開(kāi)式中x3的系數(shù)為2,則a=( 。
A.1B.-1C.-$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實(shí)數(shù)x的值的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若不等式組$\left\{\begin{array}{l}{x≥0}\\{x+y≥2}\\{3x+y≤5}\end{array}\right.$,所表示的平面區(qū)域被直線y=kx+2分成面積相等的兩部分,則k的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若x、y滿足$\left\{\begin{array}{l}{x≥0}\\{y-x+1≥0}\\{y+x-1≤0}\end{array}\right.$,則z=$\sqrt{2}$x-y的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知四棱錐P-ABCD中,底面ABCD為菱形,且平面PAC垂直于底面ABCD,△PAC中,PA=PC,PA⊥PC
(Ⅰ)求證:平面PBD⊥平面PAC
(Ⅱ)若BD=PA=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若a=2,b=3,B=$\frac{π}{3}$,則sinC=$\frac{3\sqrt{2}+\sqrt{3}}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案