在正六邊形ABCDEF中,若
AB
=(1,-
3
),則
AF
的坐標(biāo)可能為( 。
A、(-1,
3
B、(1,
3
C、(
3
,-1)
D、(
3
,1)
考點(diǎn):平行向量與共線向量
專題:平面向量及應(yīng)用
分析:根據(jù)正六邊形ABCDEF中,
AF
AB
的長度相等以及夾角為120°,兩向量關(guān)于x軸對稱,得出
AF
的坐標(biāo)可能值.
解答:解:
AF
AB
的長度相等以及夾角為120°,
∴將兩個向量的起點(diǎn)A移到原點(diǎn),

AB
=(1,-
3
),
∴兩向量關(guān)于x軸對稱,
AF
的坐標(biāo)可能為(1,
3
),
故選:B.
點(diǎn)評:本題考查正六邊形中邊角的關(guān)系及向量的模及夾角,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

球面上有3個點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長的
1
6
,經(jīng)過這3個點(diǎn)的小圓面積為9π,則此球的半徑為( 。
A、2
3
B、3
3
C、6
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,1),且
a
b
,則x等于( 。
A、-2
B、
1
2
C、2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系xOy內(nèi),已知點(diǎn)A(a,0)(a>0),點(diǎn)B(b,d)在函數(shù)f(x)=mx2(0<m<1)的圖象上,∠BOA的平分線與f(x)=mx2的圖象恰交于點(diǎn)C(1,f(1)),則實(shí)數(shù)b的取值范圍是( 。
A、(2,+∞)
B、(3,+∞)
C、[4,+∞)
D、[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(x+
π
4
)cos(x-
π
4
)-
1
2
在y軸右側(cè)的零點(diǎn)按橫坐標(biāo)從小到大依次記為P1,P2,P3,…,則|P2P4|等于( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,2),
b
=(3,-4),則
a
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=tan(cosx),下列判斷正確的是( 。
A、定義域是[-1,1]
B、是奇函數(shù)
C、值域是[-tan1,tan1]
D、在(-
π
2
π
2
)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)有高中生3500人,初中生1500人,為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為(  )
A、100B、150
C、200D、250

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果sinθ>cosθ,且θ∈(0,2π),那么角θ的取值范圍是( 。
A、(0,
π
4
B、(
π
2
,
4
C、(
π
4
,
4
D、(
4
,2π)

查看答案和解析>>

同步練習(xí)冊答案