1.已知向量$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(3,λ),且$\overrightarrow{a}$∥$\overrightarrow$,則λ等于(  )
A.$\frac{2}{3}$B.-2C.-$\frac{2}{3}$D.-$\frac{9}{2}$

分析 由向量共線可得2×λ=-3×3,解之即可.

解答 解:向量$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(3,λ),且$\overrightarrow{a}$∥$\overrightarrow$,
∴2λ=-3×3,
∴λ=-$\frac{9}{2}$,
故選:D.

點評 本題考查向量共線的充要條件,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的定義域:
(1)f(x)=log2$\sqrt{3x-2}$
(2)f(x)=$\sqrt{4-{2^x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平行四邊形中,AB=4,AD=3,∠BAD=60°,點E在BC上,且$\overrightarrow{BE}$=2$\overrightarrow{EC}$,F(xiàn)是DC的中點,則$\overrightarrow{AE}$•$\overrightarrow{BF}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x>0,y>0,$\frac{1}{x}$+$\frac{8}{y}$=1,則2x+y的最小值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?x∈R,ex≥x+1”的否定為?x∈R,ex<x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=lg(x+$\sqrt{{x}^{2}+a}$)•sinx為偶函數(shù),則函數(shù)g(x)=bx-a(b>0且b≠1)的圖象經(jīng)過定點(  )
A.(0,0)B.(0,1)C.(1,0)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a,b∈R,且a<b,若aeb=bea(為自然對數(shù)的底數(shù)),則下列正確的是( 。
A.a<-1,-1<b<0B.1<a<2,b>2C.0<a<1,b>1D.0$<a<\frac{1}{e}$,b$<\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知||$\overrightarrow{a}$=4,|$\overrightarrow$|=2,(2$\overrightarrow{a}$-3$\overrightarrow$)(2$\overrightarrow{a}$+$\overrightarrow$)=68,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合{x|x2-3x-4<0},N={-2,-1,0,1,2},則 M∩N=( 。
A.{-1,0}B.{-2,-1,0}C.{0,1}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊答案