分析 討論直線AB的斜率不存在和存在,設(shè)出直線方程,代入橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,以及兩直線垂直的條件和中點(diǎn)坐標(biāo)公式,即可得到所求直線的方程.
解答 解:當(dāng)AB⊥x軸,AB=$\sqrt{2}$,CP=3,不合題意;
當(dāng)AB與x軸不垂直,設(shè)直線AB:y=k(x-1),A(x1,y1),B(x2,y2),
將AB方程代入橢圓方程可得(1+2k2)x2-4k2x+2(k2-1)=0,
則x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2({k}^{2}-1)}{1+2{k}^{2}}$,
則C($\frac{2{k}^{2}}{1+2{k}^{2}}$,$\frac{-k}{1+2{k}^{2}}$),
且|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{2}(1+{k}^{2})}{1+2{k}^{2}}$,
若k=0,則AB的垂直平分線為y軸,與左準(zhǔn)線平行,不合題意;
則k≠0,故PC:y+$\frac{k}{1+2{k}^{2}}$=-$\frac{1}{k}$(x-$\frac{2{k}^{2}}{1+2{k}^{2}}$),P(-2,$\frac{2+5{k}^{2}}{k(1+2{k}^{2})}$),
從而|PC|=$\sqrt{1+\frac{1}{{k}^{2}}}$|xC-xP|=$\frac{2(3{k}^{2}+1)\sqrt{1+{k}^{2}}}{|k|(1+2{k}^{2})}$,
由|PC|=2|AB|,可得$\frac{2(3{k}^{2}+1)\sqrt{1+{k}^{2}}}{|k|(1+2{k}^{2})}$=$\frac{4\sqrt{2}(1+{k}^{2})}{1+2{k}^{2}}$,
解得k=±1,
此時(shí)AB的方程為y=x-1或y=-x+1.
點(diǎn)評 本題考查橢圓的方程和性質(zhì),主要考查方程的運(yùn)用,聯(lián)立直線方程,運(yùn)用韋達(dá)定理和弦長公式,同時(shí)考查兩直線垂直和中點(diǎn)坐標(biāo)公式的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,5) | B. | -4 | C. | -4或20 | D. | -11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {2,4} | C. | {3,5} | D. | {2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com