【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點(diǎn).

1)若為線段上的動(dòng)點(diǎn),證明:平面平面;

2)若為線段,,上的動(dòng)點(diǎn)(不含),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)存在,.

【解析】

(1)利用,可得平面,根據(jù)面面垂直的判定定理可證平面平面;

(2)底面,得平面平面.將問(wèn)題轉(zhuǎn)化為點(diǎn)到直線的距離有無(wú)最大值即可解決.

1)證明:因?yàn)?/span>,為線段的中點(diǎn),所以,

因?yàn)?/span>底面平面,所以,

又因?yàn)榈酌?/span>為正方形,所以,

所以平面,

因?yàn)?/span>平面,所以,

因?yàn)?/span>,所以平面,

因?yàn)?/span>平面,所以平面平面.

2)由底面,則平面平面,

所以點(diǎn)到平面的距離(三棱錐的高)等于點(diǎn)到直線的距離,

因此,當(dāng)點(diǎn)在線段,上運(yùn)動(dòng)時(shí),三棱錐的高小于或等于2,

當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),三棱錐的高為2,

因?yàn)?/span>的面積為,

所以當(dāng)點(diǎn)在線段上,三棱錐的體積取得最大值,

最大值為.

由于三棱錐的體積等于三棱錐的體積,

所以三棱錐的體積存在最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若曲線處切線與坐標(biāo)軸圍成的三角形面積為,求實(shí)數(shù)的值;

2)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角梯形中,ABCD,,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.

(Ⅰ)求證:BC⊥平面DBE

(Ⅱ)求點(diǎn)D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點(diǎn),求a的取值范圍;

設(shè)函數(shù),,當(dāng)時(shí),若對(duì)任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在,實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.

(Ⅰ)求圖中的值;

(Ⅱ)用樣本估計(jì)總體,以頻率作為概率,若在,兩塊試驗(yàn)地隨機(jī)抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

(Ⅲ)填寫(xiě)下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.15

0.10

0.05

0.025

0.010

0.005

<>0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某地區(qū)某種昆蟲(chóng)產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲(chóng)的產(chǎn)卵數(shù)(個(gè))和溫度)的7組觀測(cè)數(shù)據(jù),其散點(diǎn)圖如所示:

根據(jù)散點(diǎn)圖,結(jié)合函數(shù)知識(shí),可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來(lái)擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來(lái)擬合.根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:

27

74

182

表中,

1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);

2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時(shí)間內(nèi)的氣溫在之間(包括),估計(jì)該品種一只昆蟲(chóng)的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,.)

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)yf(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)yf(x)在區(qū)間內(nèi)單調(diào)遞增;

②函數(shù)yf(x)在區(qū)間內(nèi)單調(diào)遞減;

③函數(shù)yf(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;

④當(dāng)x2時(shí),函數(shù)yf(x)有極小值;

⑤當(dāng)x時(shí),函數(shù)yf(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,其中是自然對(duì)數(shù)的底數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)令,討論的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),下列結(jié)論中錯(cuò)誤的是(

A.的圖像關(guān)于點(diǎn)對(duì)稱(chēng)B.的圖像關(guān)于直線對(duì)稱(chēng)

C.的最大值為D.是周期函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案