18.已知定圓A:x2+y2-4x=0,定直線L:x+1=0,求與定圓A外切又與定直線L相切的圓的圓心軌跡方程.

分析 化圓的一般式方程為標(biāo)準(zhǔn)方程,利用直線與圓、圓與圓位置關(guān)系列等式得答案.

解答 解:由圓A:x2+y2-4x=0,得(x-2)2+y2=4,
如圖
設(shè)M(x,y),由題意可得:
x-(-1)=|MA|-2,
即x+1=$\sqrt{(x-2)^{2}+{y}^{2}}$-2,整理得:y2=12x+5.
∴動(dòng)圓的圓心軌跡為y2=12x+5.

點(diǎn)評(píng) 本題考查軌跡方程的求法,考查直線與圓、圓與圓位置關(guān)系的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x2-2x)lnx+ax2-x
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間.
(2)求函數(shù)f(x)在區(qū)間[$\frac{1}{e}$,e](e=2.71828…是自然對(duì)數(shù)的底數(shù))上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名六年級(jí)學(xué)生進(jìn)行了問卷調(diào)查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.已知在這30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為$\frac{4}{15}$.
常喝不常喝合計(jì)
肥胖2
不肥胖18
合計(jì)30
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整.能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.
(2)現(xiàn)從常喝碳酸飲料的學(xué)生中抽取3人參加電視節(jié)目,記ξ表示常喝碳酸飲料且肥胖的學(xué)生人數(shù),求ξ的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)={cos^2}\frac{x}{2}-{sin^2}\frac{x}{2}$的最小值是( 。
A.-1B.0C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$f(x)=\sqrt{2}sin(4x+\frac{π}{4})$.
(1)f(x)的最大值和最小值.
(2)f(x)在R上的單調(diào)區(qū)間.
(3)f(x)在$[-\frac{π}{8},\frac{π}{8}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,將四邊形ABCD中△ADC沿著AC翻折到ADlC,則翻折過程中線段DB中點(diǎn)M的軌跡是(  )
A.橢圓的一段B.拋物線的一段C.一段圓弧D.雙曲線的一段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.高安中學(xué)學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒有用過的球),3 個(gè)是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.
(1)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)在第一次訓(xùn)練時(shí)至少取到一個(gè)新球的條件下,求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.期中考試后,我校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析.規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:
優(yōu)秀人數(shù)非優(yōu)秀人數(shù)合計(jì)
甲班10x50
乙班y3050
合計(jì)3070100
(1)求出表格中x,y的值;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有99%的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”,并說明理由.
參考公式與臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且$\overrightarrow{a}$$•\overrightarrow$=0,若向量的模|$\overrightarrow{c}$$-\overrightarrow{a}$$+\overrightarrow$|=1,則|$\overrightarrow{c}$|的最小值為$\sqrt{5}$-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案