【題目】如圖,在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為 ,兩準線之間的距離為8.點P在橢圓E上,且位于第一象限,過點F1作直線PF1的垂線l1 , 過點F2作直線PF2的垂線l2 .
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)若直線l1 , l2的交點Q在橢圓E上,求點P的坐標.
【答案】解:(Ⅰ)由題意可知:橢圓的離心率e= = ,則a=2c,①
橢圓的準線方程x=± ,由2× =8,②
由①②解得:a=2,c=1,
則b2=a2﹣c2=3,
∴橢圓的標準方程: ;
(Ⅱ)設P(x0 , y0),則直線PF2的斜率 = ,
則直線l2的斜率k2=﹣ ,直線l2的方程y=﹣ (x﹣1),
直線PF1的斜率 = ,
則直線l2的斜率k2=﹣ ,直線l2的方程y=﹣ (x+1),
聯(lián)立 ,解得: ,則Q(﹣x0 , ),
由Q在橢圓上,則y0= ,則y02=x02﹣1,
則 ,解得: ,則 ,
∴P( , )或P(﹣ , )或P( ,﹣ )或P(﹣ ,﹣ ).
【解析】(Ⅰ)由橢圓的離心率公式求得a=2c,由橢圓的準線方程x=± ,則2× =8,即可求得a和c的值,則b2=a2﹣c2=3,即可求得橢圓方程;
(Ⅱ)設P點坐標,分別求得直線PF2的斜率及直線PF1的斜率,則即可求得l2及l(fā)1的斜率及方程,聯(lián)立求得Q點坐標,由Q在橢圓方程,求得y02=x02﹣1,聯(lián)立即可求得P點坐標;
【考點精析】根據(jù)題目的已知條件,利用點斜式方程的相關知識可以得到問題的答案,需要掌握直線的點斜式方程:直線經過點,且斜率為則:.
科目:高中數(shù)學 來源: 題型:
【題目】某技術公司新開發(fā)了A,B兩種新產品,其質量按測試指標劃分為:指標大于或等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種產品各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
產品A | 8 | 12 | 40 | 32 | 8 |
產品B | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計產品A,產品B為正品的概率;
(2)生產一件產品A,若是正品可盈利80元,次品則虧損10元;生產一件產品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產一件產品A和一件產品B所得的總利潤,求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點P滿足 = .
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設點Q在直線x=﹣3上,且 =1.證明:過點P且垂直于OQ的直線l過C的左焦點F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投人某種產品的宣傳費,需了解年宣傳費對年銷售額(單位:萬元)的影響,對近6年的年宣傳費和年銷售額數(shù)據(jù)進行了研究,發(fā)現(xiàn)宣傳費和年銷售額具有線性相關關系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(I)根據(jù)表中數(shù)據(jù)建立關于的回歸方程;
(Ⅱ)利用(I)中的回歸方程預測該公司如果對該產品的宜傳費支出為10萬元時銷售額是萬元,該公司計劃從10名中層管理人員中挑選3人擔任總裁助理,10名中層管理人員中有2名是技術部骨干,記所挑選3人中技術部骨干人數(shù)為且隨機變量,求的概率分布列與數(shù)學期望.
附:回歸直線的傾斜率截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,設a∈R,若關于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是( )
A.[﹣ ,2]
B.[﹣ , ]
C.[﹣2 ,2]
D.[﹣2 , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ∥ ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對應的x的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com