10.已知兩條異面直線a,b上分別有5個(gè)點(diǎn)和8個(gè)點(diǎn),則這13個(gè)點(diǎn)可以確定不同的平面?zhèn)數(shù)為(  )
A.40B.16C.13D.10

分析 根據(jù)直線及直線外一點(diǎn)可以確定一個(gè)平面,對(duì)這13個(gè)點(diǎn)所確定的平面?zhèn)數(shù)分析判斷即可.

解答 解:根據(jù)直線與直線外一點(diǎn)可以確定一個(gè)平面,得:
a上任一點(diǎn)與直線b確定一平面,共5個(gè),
b上任一點(diǎn)與直線a確定一平面,共8個(gè),
由加法原理得共有5+8=13個(gè).
故選:C.

點(diǎn)評(píng) 本題主要考查了平面的基本性質(zhì)及推論的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≥0\\ x≤2\end{array}\right.$,則目標(biāo)函數(shù)z=2x-y的最大值為( 。
A.-$\frac{1}{2}$B.1C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.自治區(qū)教科院用分層抽樣的方法,從某校600份文理科試卷中抽取部分試卷進(jìn)行樣本分析,其中抽取文科試卷若干份,每份文科試卷被抽到的概率為$\frac{1}{4}$,則理科試卷共有450份.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1有相同的焦點(diǎn),則實(shí)數(shù)b的值為( 。
A.2B.3C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在一個(gè)木箱中裝有編號(hào)分別為1,2,3,4,5的完全一樣的5個(gè)球,現(xiàn)從中同時(shí)取出兩個(gè)球,設(shè)X為取出的兩球的最大編號(hào),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{1≤x≤2}\\{-1≤x-y≤0}\end{array}\right.$,則z=x-2y的最大值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=lgx+$\frac{2}{lgx}$(0<x<1)的值域是$(-∞,-2\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖.四棱錐P-ABCD中,底面ABCD為等腰梯形,BC∥AD,平面PCD⊥平面ABCD,E.F,G分別是PA,PD,PC的中點(diǎn),PF⊥PG,AB=BC=CD=$\frac{1}{2}$AD.
(1)求證:EG∥平面ACF;
(2)求證:PE⊥PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線l1:3x-4y+2=0與直線l2:4x+3y-1=0的位置關(guān)系是( 。
A.垂直B.平行C.相交但不垂直D.重合

查看答案和解析>>

同步練習(xí)冊答案