設(shè),橢圓方程為,拋物線方程為.如圖4所示,過點作軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).
科目:高中數(shù)學 來源: 題型:
在邊長為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
在邊長為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-3x.則函數(shù)g(x)=f(x)-x+3的零點的集合為( )
A.{1,3} B.{-3,-1,1,3}
C.{2-,1,3} D.{-2-,1,3}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=x3+3|x-a|(a>0),若f(x)在[-1,1]上的最小值記為g(a).
(1)求g(a);
(2)證明:當x∈[-1,1]時,恒有f(x)≤g(a)+4.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知定義在R上的函數(shù)f(x),g(x)滿足=ax,且f′(x)g(x)<f(x)g′(x),,若有窮數(shù)列(n∈N*)的前n項和等于,則n等于( )
A.4 B.5 C.6 D.7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com