正三棱錐的三視圖如圖所示,則其外接球的體積為( 。
A、9
2
π
B、
81
16
2
π
C、18π
D、6π
考點(diǎn):球的體積和表面積,簡單空間圖形的三視圖
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由題意,正三棱錐的高為2
2
,底面三角形的高為3,設(shè)外接球的半徑為R,則R2=(2
2
-R)2+(
2
3
×3
2,求出R,再求出正三棱錐的外接球的體積.
解答: 解:由題意,正三棱錐的高為2
2
,底面三角形的高為3,
設(shè)外接球的半徑為R,則R2=(2
2
-R)2+(
2
3
×3
2
∴R=
3
2
,
∴外接球的體積為
4
3
π•(
3
2
)3
=9
2
π,
故選:A.
點(diǎn)評:本題考查外接球的體積,考查三視圖,確定外接球的半徑是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)為R上的偶函數(shù),若對任意的x1、x2∈(-∞,0](x1≠x2),都有
f(x2)-f(x1)
x2-x1
>0,則(  )
A、f(-2)<f(1)<f(3)
B、f(1)<f(-2)<f(3)
C、f(3)<f(-2)<f(1)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,則橢圓
x2
a2
+
y2
b2
=1的離心率為(  )
A、
1
2
B、
3
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,
nan-an+1
an+1
=n,n∈N.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
2n
an
,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明“1+a+a2+…+an+1=
1-an+2
1-a
,(a≠1,n∈N*)
”時,在驗(yàn)證n=1成立時,左邊應(yīng)該是(  )
A、1+a+a2
B、1+a+a2+a3
C、1+a
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),右焦點(diǎn)為F(1,0),A、B是橢圓C的左、右頂點(diǎn),D是橢圓C上異于A、B的動點(diǎn),且△ADB面積的最大值為
2

(1)求橢圓C的方程;
(2)是否存在一定點(diǎn)E(x0,0)(0<x0
2
),使得當(dāng)過點(diǎn)E的直線l與曲線C相交于A,B兩點(diǎn)時,
1
|
EA
|
2
+
1
|
EB
|
2
為定值?若存在,求出定點(diǎn)和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條光線從原點(diǎn)(0,0)射到直線l:2x-y+5=0上,再經(jīng)反射后過B(1,3),求反射光線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的莖葉圖中,乙組數(shù)據(jù)的中位數(shù)是( 。
A、84B、85C、86D、87

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(x,0),
c
=(2,4)
,且(
a
+
b
)∥
c
,則實(shí)數(shù)x的值為
 

查看答案和解析>>

同步練習(xí)冊答案