【題目】已知函數(shù)fx)是定義在R上的奇函數(shù),且當(dāng)x0時,fx)=x2+2x.現(xiàn)已畫出函數(shù)fx)在y軸左側(cè)的圖象如圖所示,

(1)畫出函數(shù)fx),xR剩余部分的圖象,并根據(jù)圖象寫出函數(shù)fx),xR的單調(diào)區(qū)間;(只寫答案)

2)求函數(shù)fx),xR的解析式.

【答案】(1)圖象見解析;遞減區(qū)間為(﹣,﹣1],[1,+∞);增區(qū)間為(﹣1,1);

(2)fx

【解析】

1)根據(jù)題意,由奇函數(shù)的性質(zhì)結(jié)合函數(shù)fx)在y軸左側(cè)的圖象,即可補充函數(shù)圖象,據(jù)此寫出函數(shù)的單調(diào)區(qū)間即可得答案;

2)根據(jù)題意,由奇函數(shù)的性質(zhì)可得f0)=0,設(shè)x0時,則﹣x0,由函數(shù)的解析式可得f(﹣x),結(jié)合奇函數(shù)的性質(zhì)可得fx)的解析式,綜合即可得答案.

1)根據(jù)題意,函數(shù)fx)是定義在R上的奇函數(shù),則其圖象如圖:

其遞減區(qū)間為(﹣,﹣1],[1+∞);

增區(qū)間為(﹣11);

2)根據(jù)題意,函數(shù)fx)是定義在R上的奇函數(shù),則f0)=0,滿足fx)=x2+2x;

當(dāng)x0時,則﹣x0,則f(﹣x)=(﹣x2+2(﹣x)=x22x,

又由函數(shù)fx)是定義在R上的奇函數(shù),則fx)=﹣f(﹣x)=﹣x2+2x,

綜上:fx

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的三條對邊分別為,.

(1)求

(2)點在邊上,,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋中有個白球和個紅球(,且),每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.

(1)試用含的代數(shù)式表示一次摸球中獎的概率;

(2)若,求三次摸球恰有一次中獎的概率;

(3)記三次摸球恰有一次中獎的概率為,當(dāng)為何值時,取最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準線分別交于O、A、B三點,O為坐標(biāo)原點.若雙曲線的離心率為2,△AOB的面積為 ,則p=(
A.1
B.
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)=x2+bx+c有兩個零點1和﹣1

1)求fx)的解析式;

2)設(shè)gx,試判斷函數(shù)gx)在區(qū)間(﹣11)上的單調(diào)性并用定義證明;

3)由(2)函數(shù)gx)在區(qū)間(﹣11)上,若實數(shù)t滿足gt1)﹣g(﹣t)>0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1,3,5,7,9這五個數(shù)中,每次取出兩個不同的數(shù)分別記為a,b,共可得到lga﹣lgb的不同值的個數(shù)是(
A.9
B.10
C.18
D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生

(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(2)甲乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編程寫出程序重復(fù)運行n次后,統(tǒng)計記錄輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).
甲的頻數(shù)統(tǒng)計圖(部分)

運行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計圖(部分)

運行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當(dāng)n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合要求的可能性較大;
(3)將按程序擺圖正確編寫的程序運行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1﹣ )元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

同步練習(xí)冊答案