【題目】【天津市紅橋區(qū)重點中學(xué)八校2017屆高三4月聯(lián)考數(shù)學(xué)(文)】已知橢圓的中心在原點,離心率等于,它的一個短軸端點恰好是拋物線的焦點
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點, , 是橢圓上位于直線兩側(cè)的動點.①若直線的斜率為,求四邊形面積的最大值;
②當, 運動時,滿足,試問直線的斜率是否為定值,請說明理由
【答案】(1)(2)
【解析】試題分析: (1)由橢圓的離心率及短軸端點坐標求出 ,得到橢圓方程; (2)①設(shè) 設(shè)直線AB方程為 ,聯(lián)立直線與橢圓方程,消去 ,得到一個關(guān)于 的二次方程,求出 ,再求出 ,代入三角形面積公式,求出最大值; ②由 得到直線斜率之和為0,設(shè)直線 斜率為 ,則直線斜率為,直線 方程為,代入橢圓方程中,求出 的表達式,同理求出的表達式,再求出 的值,代入直線的斜率計算公式中,結(jié)果為定值.
試題解析:(1) ∴
∴ 又
∴ ∴ 橢圓方程為
(2)①設(shè) ,
設(shè)方程 代入化簡
,
又、
當時, 最大為
②當時, 、斜率之和為.
設(shè)斜率為,則斜率為
設(shè)方程
代入化簡
同理
,
∴
直線的斜率為定值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照國家環(huán)保部發(fā)布的新修訂的《環(huán)境空氣質(zhì)量標準》,規(guī)定:PM2.5的年平均濃度不得超過35微克/立方米,國家環(huán)保部門在2016年10月1日到2017年1月30日這120天對全國的PM2.5平均濃度的監(jiān)測數(shù)據(jù)統(tǒng)計如下:
組別 | PM2.5濃度(微克/立方米) | 頻數(shù)(天) |
第一組 | 32 | |
第二組 | 64 | |
第三組 | 16 | |
第四組 | 115以上 | 8 |
(1)在這120天中抽取30天的數(shù)據(jù)做進一步分析,每一組應(yīng)抽取多少天?
(2)在(1)中所抽取的樣本PM2.5的平均濃度超過75(微克/立方米)的若干天中,隨機抽取2天,求恰好有一天平均濃度超過115(微克/立方米)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考北京文數(shù)】已知橢圓C:過點A(2,0),B(0,1)兩點.
(I)求橢圓C的方程及離心率;
(Ⅱ)設(shè)P為第三象限內(nèi)一點且在橢圓C上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(3,0), =(﹣5,5), =(2,k)
(1)求向量 與 的夾角;
(2)若 ∥ ,求k的值;
(3)若 ⊥( ),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)a的值為多少時,f(x)是偶函數(shù)?
(2)若對任意x∈[0,+∞),都有f(x)>0,求實數(shù)a的取值范圍.
(3)若f(x)在區(qū)間[0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當時,求函數(shù)的極值;
(Ⅱ)當時,討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.
(1)若α=β,則sin α=sin β;
(2)若對角線相等,則梯形為等腰梯形;
(3)已知a,b,c,d都是實數(shù),若a=b,c=d,則a+c=b+d.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com