精英家教網 > 高中數學 > 題目詳情
5.若實數x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$則2x+y的最小值為( 。
A.$-\frac{1}{2}$B.0C.1D.$\frac{3}{2}$

分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義,即可得到結論.

解答 解:作出不等式組對應的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經過點A時,直線的截距最小,
此時z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,
即A(-$\frac{1}{2}$,$\frac{1}{2}$),此時z=-$\frac{1}{2}$×2+$\frac{1}{2}$=-$\frac{1}{2}$,
故選:A.

點評 本題主要考查線性規(guī)劃的應用,利用數形結合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.如圖是函數y=Asin(ωx+φ)+2(A>0,ω>0,|φ|<π)的圖象的一部分,則它的振幅、周期、初相分別是( 。
A.A=3,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$B.A=3,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$
C.A=1,$T=\frac{4π}{3},φ=-\frac{π}{6}$D.A=1,$T=\frac{4π}{3},φ=-\frac{3π}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.在△ABC中,有命題:
①$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$;
②$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$;
③若($\overrightarrow{AB}$+$\overrightarrow{AC}$)($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,則△ABC是等腰三角形;
④若$\overrightarrow{AB}$•$\overrightarrow{CA}$>0,則△ABC為銳角三角形.
上述命題正確的是( 。
A.②③B.①④C.①②D.②③④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.甲、乙兩名運動員的5次測試成績如圖所示,以這5次測試成績?yōu)榕袛嘁罁,則甲、乙兩名運動員成績穩(wěn)定性較差的是甲.(填“甲、乙”)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-1,0),$\overrightarrow{c}$=($\sqrt{3}$,k),若2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{c}$垂直,則k=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.某校高三年級5個班進行拔河比賽,每兩個班都要比賽一場.到現(xiàn)在為止,1班已經比了4場,2班已經比了3場,3班已經比了2場,4班已經比了1場,則5班已經比了2場.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知函數$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分圖象如圖所示,則$y=f(x+\frac{π}{6})$取得最小值時x的集合為(  )
A.$\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$B.$\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$C.$\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$D.$\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知拋物線C:x2=2py(p>0)的焦點為F,過拋物線上一點P作拋物線C的切線l交x軸于點D,交y軸于點Q,當|FD|=2時,∠PFD=60°.
(1)判斷△PFQ的形狀,并求拋物線C的方程;
(2)已知點M(2,2),若拋物線上異于點P的不同兩點A,B滿足$\overrightarrow{AM}$+$\overrightarrow{BM}$=0,且經過A,B,P三點的圓和拋物線在點P處有相同的切線,求P點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.設集合A={x|x2-4x+3<0},B={x|2x-3>0},則A∩B=( 。
A.(-3,-$\frac{3}{2}$)B.($\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.(-3,$\frac{3}{2}$)

查看答案和解析>>

同步練習冊答案