6.已知函數(shù)f(x)=ax+$\frac{x}$+c是奇函數(shù),且滿足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b,c的值;
(2)試判斷函數(shù)f(x)在區(qū)間(0,$\frac{1}{2}$)上的單調(diào)性并證明.

分析 (1)由函數(shù)是奇函數(shù)得到c=0,再利用題中的2個(gè)等式求出a、b的值.
(2)區(qū)間(0,$\frac{1}{2}$)上任取2個(gè)自變量x1、x2,將對(duì)應(yīng)的函數(shù)值作差、變形到因式積的形式,判斷符號(hào),依據(jù)單調(diào)性的定義做出結(jié)論.

解答 解:(1)∵f(-x)=-f(x)∴c=0,
∵$\left\{\begin{array}{l}{f(1)=\frac{5}{2}}\\{f(2)=\frac{17}{4}}\end{array}\right.$,∴$\left\{\begin{array}{l}{a+b=\frac{5}{2}}\\{2a+\frac{2}=\frac{14}{4}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=2}\\{b=\frac{1}{2}}\end{array}\right.$;
(2)∵由(1)問可得f(x)=2x+$\frac{1}{2x}$,
∴f(x)在區(qū)間(0,0.5)上是單調(diào)遞減的;
證明:設(shè)任意的兩個(gè)實(shí)數(shù)0<x1<x2<$\frac{1}{2}$,
∵f(x1)-f(x2)=2(x1-x2)+$\frac{1}{{2x}_{1}}$-$\frac{1}{{2x}_{2}}$=2(x1-x2)+$\frac{{{x}_{2}-x}_{1}}{{{2x}_{1}x}_{2}}$=$\frac{{(x}_{2}{-x}_{1})(1-{{4x}_{1}x}_{2})}{{{2x}_{1}x}_{2}}$,
又∵0<x1<x2<$\frac{1}{2}$,
∴x1-x2<0,0<x1x2<$\frac{1}{4}$,1-4x1x2>0,
f(x1)-f(x2)>0,
∴f(x)在區(qū)間(0,0.5)上是單調(diào)遞減的.

點(diǎn)評(píng) 本題考查用待定系數(shù)法求解析式,證明函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全球組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題,代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如表:(單位:人)
  立體幾何題 代數(shù)題 總計(jì)
 男同學(xué) 22 8 30
 女同學(xué) 8 12 20
 總計(jì) 30 20 50
(Ⅰ)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(Ⅱ)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為$\frac{4}{5}$,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行探究,記抽取的兩人中答對(duì)的人數(shù)為X,求 X的分布列及數(shù)學(xué)期望.
附表及公式
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列方程表示的直線傾斜角為135°的是( 。
A.y=x-1B.y-1=$\frac{\sqrt{2}}{2}$(x+2)C.$\frac{x}{5}$+$\frac{y}{5}$=1D.$\sqrt{2}$x+2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合P={x|x≥2},Q={x|1<x≤2},則(∁RP)∩Q=(  )
A.[0,1)B.(0,2]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓(x-1)2+y2=4上一動(dòng)點(diǎn)Q,則點(diǎn)P(-2,-3)到點(diǎn)Q的距離的最小值為$3\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個(gè)圓錐的底面半徑為2cm,高為6cm,在其中有一個(gè)高位xcm的內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積最大時(shí),x=3cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,∠ACB=90°,∠ABC=30°,AC=1,且三棱柱ABC-A1B1C1的體積為3,則三棱柱ABC-A1B1C1的外接球的表面積為( 。
A.πB.12πC.16πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.A={x|0≤x≤2},下列圖象中能表示定義域和值域都是A的函數(shù)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}滿足:a1=1,an+1=2an+1.
(1)證明:數(shù)列{an}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{n•(an+1)}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案