【題目】某中學(xué)為調(diào)查該校學(xué)生每周參加社會實踐活動的情況,隨機收集了若干名學(xué)生每周參加社會實踐活動的時間(單位:小時),將樣本數(shù)據(jù)繪制如圖所示的頻率分布直方圖,且在[0,2)內(nèi)的學(xué)生有1人.
(1)求樣本容量,并根據(jù)頻率分布直方圖估計該校學(xué)生每周參加社會實踐活動時間的平均值;
(2)將每周參加社會實踐活動時間在[4,12]內(nèi)定義為“經(jīng)常參加社會實踐”,參加活動時間在[0,4)內(nèi)定義為“不經(jīng)常參加社會實踐”.已知樣本中所有學(xué)生都參加了青少年科技創(chuàng)新大賽,有13人成績等級為“優(yōu)秀”,其余成績?yōu)椤耙话恪,其中成績?yōu)秀的13人種“經(jīng)常參加社會實踐活動”的有12人.請將2×2列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為青少年科技創(chuàng)新大賽成績“優(yōu)秀”與經(jīng)常參加社會實踐活動有關(guān);
(3)在(2)的條件下,如果從樣本中“不經(jīng)常參加社會實踐”的學(xué)生中隨機選取兩人參加學(xué)校的科技創(chuàng)新班,求其中恰好一人成績優(yōu)秀的概率.
參考公式和數(shù)據(jù):
.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【答案】(1),5.8小時;(2)見解析;(3)
【解析】分析:(1)先根據(jù)條件求得樣本容量,然后再根據(jù)頻率分布直方圖中平均數(shù)的求法求解.(2)結(jié)合題意完成列聯(lián)表,并求出,與臨界值表對照后可得結(jié)論.(3)根據(jù)題意得不經(jīng)常參加社會實踐活動的有人,其中成績優(yōu)秀的有1人,然后根據(jù)古典概型概率的求法求解.
詳解:(1)由題意得活動時間在的頻率為,
又參加社會實踐活動的時間在內(nèi)的有人,
所以樣本容量.
根據(jù)頻率分布直方圖,該校學(xué)生每周參加社會實踐活動時間的平均值為:
(小時).
(2)由題意得“不經(jīng)常參加社會實踐”的學(xué)生有人,
所以列聯(lián)表如下:
由表中數(shù)據(jù)可得.
所以在犯錯誤的概率不超過的前提下可以認(rèn)為“青少年科技創(chuàng)新大賽成績優(yōu)秀與經(jīng)常參加社會實踐活動有關(guān)系”.
(3)由(2)知不經(jīng)常參加社會實踐活動的有人,其中成績優(yōu)秀的有1人.
設(shè)成績優(yōu)秀的編號為;成績一般的學(xué)生有人,編號依次為.
所有參加培訓(xùn)的情況有: ,共10種.
恰好一人成績優(yōu)秀的情況有,共4種.
所以由古典概型計算公式得所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(為常數(shù),且).
(1)若當(dāng)時,函數(shù)與的圖象有且只要一個交點,試確定自然數(shù)的值,使得(參考數(shù)值,,,);
(2)當(dāng)時,證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形,中心角().為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點,分別在邊和上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;
(2)試問:當(dāng)為多少時,年總收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在上恒有意義,求的取值范圍;
(2)是否存在實數(shù),使函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在求出的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),有下列結(jié)論:
①的定義域為(-1, 1); ②的值域為(, );
③的圖象關(guān)于原點成中心對稱; ④在其定義域上是減函數(shù);
⑤對的定義城中任意都有.
其中正確的結(jié)論序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點.
(1)若甲乙都以每分鐘的速度從點出發(fā)在各自的大道上奔走,到大道的另一端
時即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請將甲
乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線過點,且傾斜角為,在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度,以原點為極點,軸的非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為.
(1)求直線的參數(shù)方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com