【題目】如圖,正方體的棱長(zhǎng)為,其中為底面的中心,,分別為,的中點(diǎn),平面與底面交于直線.
(1)求證:.
(2)求點(diǎn)到平面的距離.
【答案】(1)證明見解析(2)
【解析】
(1)先利用面面平行的判定定理證明面面,再根據(jù)面面平行的性質(zhì)定理可證;
(2)根據(jù)以及體積公式可求得點(diǎn)到平面的距離.
(1)解:如圖所示,
連接、,
∵為正方形的中心,∴為中點(diǎn),
又∵為的中點(diǎn),∴為△的中位線,∴.
又∵面,面,∴面,
因?yàn)?/span>,且,∴為平行四邊形,
∴,且,
又∵,且,∴,且,
∴為平行四邊形,所以.
又∵面,面,∴面,
又∵面,且,∴面面,
又∵面面,面面,
∴.
(2)設(shè)點(diǎn)到面的距離為,連接、,
如圖所示:
∵正方體的棱長(zhǎng)為,且為中點(diǎn),
∴,
同理可求,,
∴,
∴,
∵,且,∴,
又∵面,且,∴,
又∵,∴,
∴點(diǎn)到面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)
(1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的方程為,.
(1)若直線在軸、軸上的截距之和為-1,求坐標(biāo)原點(diǎn)到直線的距離;
(2)若直線與直線:和:分別相交于、兩點(diǎn),點(diǎn)到、兩點(diǎn)的距離相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位: )和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中,.
(1)根據(jù)散點(diǎn)圖判斷, 與哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)與、的關(guān)系為.根據(jù)(2)的結(jié)果要求:年宣傳費(fèi)為何值時(shí),年利潤(rùn)最大?
附:對(duì)于一組數(shù)據(jù), ,…, 其回歸直線的斜率和截距的最小二乘估計(jì)分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是真命題的是
A. 命題“若,則”的否命題是“若,則”
B. 若為假命題,則p,q均為假命題
C. 命題p:,,則:,
D. “”是“函數(shù)為偶函數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=4,點(diǎn)E在線段AB上.過點(diǎn)E作EF∥BC交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB.
(2)試問:當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),二面角PFCB的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線與軸,軸的交點(diǎn)分別為,圓以線段為直徑.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線過點(diǎn),與圓交于點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為矩形,點(diǎn)A、E、B、F共面,且和均為等腰直角三角形,且90°.
(Ⅰ)若平面ABCD平面AEBF,證明平面BCF平面ADF;
(Ⅱ)問在線段EC上是否存在一點(diǎn)G,使得BG∥平面CDF,若存在,求出此時(shí)三棱錐G-ABE與三棱錐G-ADF的體積之比.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com