海上有A、B兩島相距10海里,從A島望B島和C島成60°的視角,從B島望C島和A島成30°視角,則B、C之間的距離是
 
海里.
考點:解三角形的實際應用
專題:計算題,解三角形
分析:依題意,作出圖形,利用正弦定理解決即可.
解答: 解:依題意,作圖如下:
∵∠CAB=60°,∠ABC=30°,
∴△ABC為直角三角形,∠C為直角,又|AB|=10海里,
∴|BC|=|AB|sin60°=10×
3
2
=5
3
海里,
故答案為:5
3
點評:本題考查正弦定理的應用,考查作圖與識圖能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)=
x+b
x2+a
的定義域為R,f(1)=
1
2

(1)求實數(shù)a、b的值;
(2)證明函數(shù)f(x)在區(qū)間(-1,1)上為增函數(shù);
(3)判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:
2x-1
≤1,q:(x-a)(x-a-1)≤0.若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①已知橢圓
x2
16
+
y2
9
=1的左右焦點分別為F1,F(xiàn)2,P為橢圓上一點,并且|PF1|=3,則|PF2|=1;
②雙曲線C:
y2
9
-
x2
16
=1的頂點到漸近線的距離為
12
5

③若⊙C1:x2+y2+2x=0;⊙C2:x2+y2+2y-1=0,則這兩圓恰有2條公切線;
④若直線l1:a2x-y+6=0與直線l2:4x-(a-3)y+9=0互相垂直,則a=-1
其中正確命題的序號是
 
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
5
+
y2
4
=1的焦點坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=2+i,z2=3-i(i是虛數(shù)單位),則復數(shù)
z1
z2
的實部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式-2x2+5x+12>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知∠A滿足:
3
sinA+cosA=1,AB=2,AC=3,則邊BC的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項等比數(shù)列{an}滿足:a2013=a2012+2a2011,且
anam
=4a1
,則6(
1
m
+
1
n
)的最小值為( 。
A、4
B、2
C、
2
3
D、6

查看答案和解析>>

同步練習冊答案