18.如圖,在△ABC中,∠ACB=90°,AB=2AC=8,作△ABC外接圓O的切線CD,作BD⊥CD于D,交圓O于點(diǎn)E,給出下列四個(gè)結(jié)論:①∠BCD=60°;②DE=2;③BC2=BD•BA;④CE∥AB;則其中正確的序號(hào)是①②③④.

分析 利用直角△ABC的邊角關(guān)系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的邊角關(guān)系即可得出CD,BD.再利用切割線定理可得CD2=DE•DB,即可得出DE.利用△ACB∽△CDB,可得BC2=BD•BA;證明∠BCE=∠ABC,可得CE∥AB

解答 解:在△ABC中,∠C=90°,∠A=60°,AB=8,∴BC=AB•sin60°=4$\sqrt{3}$.
∵CD是此圓的切線,∴∠BCD=∠A=60°,即①正確.
在Rt△BCD中,CD=BC•cos60°=2$\sqrt{3}$,BD=BC•sin60°=6.
由切割線定理可得CD2=DE•DB,∴12=6DE,解得DE=2,即②正確.
∵∠BCD=∠A,∠D=∠ACB,∴△ACB∽△CDB,∴CB:DB=AB:CB,∴BC2=BD•BA,即③正確;
④∵∠ECD=∠ABC=30°,∠BCD=60°,∴∠BCE=30°=∠ABC,∴CE∥AB,即④正確;
故答案為:①②③④.

點(diǎn)評(píng) 熟練掌握直角三角形的邊角關(guān)系、弦切角定理、切割線定理是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}為遞增數(shù)列且滿足a1+a10=10,則a5的取值范圍是(  )
A.(5,10)B.(5,+∞)C.(-∞,5)D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將y=2x的圖象關(guān)于直線y=x對(duì)稱后,再向右平行移動(dòng)一個(gè)單位所得圖象表示的函數(shù)的解析式是( 。
A.y=log2(x+1)B.y=log2(x-1)C.y=log2x+1D.y=log2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:(4x-3)2≤1;命題q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,
(1)p是q的什么條件?
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各函數(shù)中,值域?yàn)椋?,+∞)的是( 。
A.y=${3^{\frac{1}{x+1}}}$B.y=${2^{-\frac{x}{2}}}$C.y=x2+x+1D.y=$\sqrt{1-{2}^{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點(diǎn) P(-1,1)在曲線y=$\frac{x^2}{x+a}$上,則曲線在點(diǎn) P處的切線方程為y=-3x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)A=(-∞,4),函數(shù)$g(x)=\sqrt{{x^2}-2x-3}$的定義域?yàn)榧螧.
求:(1)B;
(2)A∩B,A∪B,∁R(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.記事件A為“直線ax-by=0與圓(x-2$\sqrt{2}$)2+y2=6相交”.
(1)若將一顆骰子先后擲兩次得到的點(diǎn)數(shù)分別記為a,b,求事件A發(fā)生的概率.
(2)若實(shí)數(shù)a、b滿足(a-$\sqrt{3}$)2+(b-1)2≤4,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí),共有多少種不同的分法?

查看答案和解析>>

同步練習(xí)冊(cè)答案