19.設等比數(shù)列{an}的公比q>1,前n項和為Sn,則$\underset{lim}{n→∞}$$\frac{{S}_{n+2}}{{S}_{n}}$=q2

分析 利用等比數(shù)列求和以及數(shù)列的極限求解即可.

解答 解:等比數(shù)列{an}的公比q>1,前n項和為Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,
則$\underset{lim}{n→∞}$$\frac{{S}_{n+2}}{{S}_{n}}$=$\underset{lim}{n→∞}$$\frac{\frac{{a}_{1}(1-{q}^{n+2})}{1-q}}{\frac{{a}_{1}(1-{q}^{n})}{1-q}}$=$\underset{lim}{n→∞}$$\frac{1-{q}^{n}•{q}^{2}}{1-{q}^{n}}$
=$\underset{lim}{n→∞}$$\frac{\frac{1}{{q}^{n}}-{q}^{2}}{\frac{1}{{q}^{2}}-1}$=$\frac{-{q}^{2}}{-1}$=q2
故答案為:q2

點評 本題考查等比數(shù)列的應用,數(shù)列的求和,考查數(shù)列的極限的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=-$\frac{{x}^{3}}{{x}^{3}+1}$,x∈R.
(1)若f(a)=-$\frac{9}{8}$,求a的值;
(2)證明對于任意非零實數(shù)m,f(m)+f($\frac{1}{m}$)的值都與m無關;
(3)求f($\frac{1}{10}$)+f($\frac{1}{9}$)+…+f($\frac{1}{2}$)+f(1)+f(2)+…+f(10)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.2013年4月20日,四川省雅安市發(fā)生7.0級地震,某運輸隊接到給災區(qū)運送物資任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t救災物資.已知每輛卡車每天往返的次數(shù)為A型車16次,B型車12次,每輛卡車每天往返的成本為A型車240元,B型車378元,問每天派出A型車與B型車各多少輛,運輸隊所花的成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知二項式(2x+$\frac{1}{x}$)n的展開式中第3項系數(shù)與第4項系數(shù)相等,求含$\frac{1}{{x}^{2}}$的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求y=$\frac{{x}^{2}-x+1}{{x}^{2}+x+1}$(x∈(0,+∞))值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設有某進制數(shù)4+4=10,根據(jù)這個運算規(guī)則,十進制運算3+6的結果寫成該進制為(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.求函數(shù)y=2-$\frac{3}{\sqrt{{x}^{2}-4x+5}}$的定義域和值域( 。
A.(-∞,-$\frac{1}{2}$],值域[-1,2]B.(-∞,-$\frac{1}{2}$],值域[-1,2)
C.定義域R,值域[-1,2)D.定義域R,值域[-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={x|-3≤x≤1},B={x|log2x≤1},則A∩B=( 。
A.{x|-3≤x≤1}B.{x|0<x≤1}C.{x|-3≤x≤2}D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.

(Ⅰ)求直方圖中x的值;
(Ⅱ)在月平均用電量為,[220,240),[240,260),[260,280)的三用戶中,用分層抽樣的方法抽取10居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?
(Ⅲ)求月平均用電量的中位數(shù).

查看答案和解析>>

同步練習冊答案