14.設(shè)f(3x-4)=22x-1+1,則f(-1)=3.

分析 由題意:可知函數(shù)是復(fù)合函數(shù),方法一,換元法可以求出f(x)的解析式,再求(-1);
方法二,根據(jù)復(fù)合函數(shù)的定義域性質(zhì),3x-4=-1,解出x的值,帶入計(jì)算即可得到答案.

解答 解法一:換元法,
解:令t=3x-4,則x=$\frac{1}{3}$(t+4)
故f(t)=${2}^{\frac{2}{3}(t+4)-1}+1$
那么:f(-1)=${2}^{\frac{2}{3}(-1+4)-1}+1$=3
解法二:
根據(jù)復(fù)合函數(shù)的定義域性質(zhì):
令:3x-4=-1,則f(-1)=22x-1+1
由:3x-4=-1,
解得:x=1
那么,f(-1)=22-1+1=3
故答案為3.

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求法,利用了換元法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.剛剛結(jié)束的奧運(yùn)會(huì)女排決賽,中國(guó)隊(duì)3:1戰(zhàn)勝塞爾維亞隊(duì),勇奪冠軍,這場(chǎng)比賽吸引了大量觀眾進(jìn)入球迷吧看現(xiàn)場(chǎng)直播,不少是女球迷,根據(jù)某體育球迷社區(qū)統(tǒng)計(jì),在“球色伊人”球迷吧,共有40名球迷觀看,其中20名女球迷;在“鐵漢柔情”球迷吧,共有30名球迷觀看,其中10名是女球迷.
(Ⅰ)從兩個(gè)球迷吧當(dāng)中所有的球迷中按分層抽樣方法抽取7個(gè)球迷做興趣咨詢.
①在“球色伊人”球迷吧男球迷中抽取多少個(gè)?
②若從7個(gè)球迷中抽取兩個(gè)球迷進(jìn)行咨詢,求這兩個(gè)球迷恰來(lái)自于不同球迷吧且均屬女球迷的概率;
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有85%的把握認(rèn)為男球迷或女球迷進(jìn)球迷吧觀看比賽的動(dòng)機(jī)與球迷吧取名有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)全集為R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ex-ax-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)集合A={x|y=$\sqrt{{x^2}-4x+3}$},B={y|y=x+$\frac{m}{x}$(m>0),x∈∁RA},若2$\sqrt{m}$∈B,則m取值范圍是(1,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0,若p∨q為假命題,則實(shí)數(shù)m的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在等差數(shù)列{an}中,
(1)已知S8=48,S12=168,求a1和d;
(2)已知a6=10,S5=5,求a8和S8;
(3)已知a3+a15=40,求S17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,依此規(guī)律,若$\sqrt{8+\frac{a}}$=8$\sqrt{\frac{a}}$,則a、b的值分別是8,63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),AD是∠BAC的平分線,過(guò)點(diǎn)D作DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE2=EC•EA;
(2)過(guò)D點(diǎn)作DF⊥AB,垂足為F,求證:$\frac{AF}{AE}$=$\frac{CE}{FB}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案