已知函數(shù)f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)在給出的直角坐標(biāo)系中,畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:
分析:(1)先利用三角恒等變換公式對函數(shù)的解析式進(jìn)行化簡,用二倍角公式和兩個(gè)角的和的正弦公式,再依據(jù)化簡后的解析式求三角函數(shù)的周期.
(2)在所給的區(qū)間上找出函數(shù)值域的幾個(gè)特殊點(diǎn):最大值和最小值點(diǎn),再列出表格,在坐標(biāo)系中描出點(diǎn)畫出函數(shù)圖象.
解答: 解:(1)由題意得,f(x)=
3
(1-2sin2x)+sin2x

=sin2x+
3
cos2x
=2sin(2x+
π
3
)
…(2分)
∴函數(shù)的最小正周期T=π,
-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ
(k∈Z)得,
-
12
+kπ≤x≤
π
12
+kπ
,k∈Z
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[-
12
+kπ,
π
12
+kπ]
(k∈Z)…(6分)
(2)由y=2sin(2x+
π
3
)知,列表如下:
 x 0 
π
12
 
π
3
 
12
 
6
 π
 y 
3
 2 0-2 0 
3
函數(shù)y=f(x)在區(qū)間[0,π]上,圖象如圖:
點(diǎn)評:本題考查三角函數(shù)的最值,以及函數(shù)的圖象的作法,解題的關(guān)鍵是對函數(shù)的解析式進(jìn)行化簡,以及熟練掌握正弦函數(shù)的性質(zhì),作三角函數(shù)函數(shù)的圖象一般用五點(diǎn)法作圖,化簡函數(shù)f(x)的解析式是解題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的增函數(shù),設(shè)F(x)=f(x)-f(2-x).
(1)用定義證明:F(x)=f(x)-f(2-x)是R上的增函數(shù);
(2)證明:如果x1+x2>2,則F(x1)+F(x2)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x+y≤4
y≥x
x+1≥0
畫出可行域.并求z=2x-y的最大、最小值,及取最大最小值時(shí)的x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,sin(A+B)=2sin(A-B).
(1)若B=
π
6
,求A;
(2)若tanA=2,求tanB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)P(1,
3
2
),且離心率e=
3
2
,M(m,n)是橢圓C上的動點(diǎn),直線l的方程為mx+nx=1
(1)求橢圓C的方程;
(2)直線l與圓x2+y2=b2相交于A,B兩點(diǎn),求|AB|的最大值;
(3)求出與直線l恒相切的定橢圓C′的方程.探究:若M(m,n)是曲線E:Ax2+By2=1(AB≠0)上的動點(diǎn),是否仍存在與直線l:mx+ny=1恒相切的定曲線E′?若存在,直接寫出定曲線E′的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg[a2x+2(ab)x-b2x+1](a>0,b>0),求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
4
,a2=
3
4
,2an=an+1+an-1(n≥2,n∈N),數(shù)列{bn}滿足:b1<0,3bn-bn-1=n(n≥2,n∈R),數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求證:數(shù)列{bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}為遞增數(shù)列;
(Ⅲ)若當(dāng)且僅當(dāng)n=3時(shí),Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{bn}滿足b1=2,bn=
bn-1
1+bn-1
,(n≥2,n∈N+
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{
2n+1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值.
(Ⅰ)log864+3log32+(
3
-
2
0+(-
2
3
-1-(3
3
8
)
1
3

(Ⅱ)(lg5)2+2lg2-(lg2)2

查看答案和解析>>

同步練習(xí)冊答案