18.已知滿足$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{2x-y-m≤0}\\{\;}\end{array}\right.$,若目標(biāo)函數(shù)z=3x+y的最大值為10,則z的最小值為5.

分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)z的幾何意義,利用數(shù)形結(jié)合即可得到m的值.然后即可得到結(jié)論.

解答 解:不等式組對應(yīng)的平面區(qū)域如圖:
由z=3x+y得y=-3x+z
平移直線y=-3x+z,則由圖象可知當(dāng)直線y=-3x+z經(jīng)過點(diǎn)C時(shí),直線y=-3x+z的截距最大,此時(shí)z最大,為3x+y=10
由$\left\{\begin{array}{l}{3x+y=10}\\{x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),
此時(shí)C在2x-y-m=0上,
則m=5.
當(dāng)直線y=-3x+z經(jīng)過點(diǎn)A時(shí),直線y=-3x+z的截距最小,此時(shí)z最小,
由$\left\{\begin{array}{l}{x=2}\\{2x-y-5=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即A(2,-1),
此時(shí)z=3×2-1=5,
故答案為:5.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線C的方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦點(diǎn)分別是F1,F(xiàn)2,已知點(diǎn)M坐標(biāo)為(2,1).雙曲線C上點(diǎn)P(x0,y0)(x0>0,y0>0)滿足$\overrightarrow{OM}$=$\overrightarrow{OP}$+λ($\frac{\overrightarrow{P{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$+$\frac{\overrightarrow{P{F}_{2}}}{|P{F}_{2}|}$),則S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-4y2=1(a>0)的右頂點(diǎn)到其一條漸近線的距離等于$\frac{\sqrt{3}}{4}$,拋物線E:y2=2px的焦點(diǎn)與雙曲線C的右焦點(diǎn)重合,直線l的方程為x-y+4=0,在拋物線上有一動點(diǎn)M到y(tǒng)軸的距離為d1,到直線l的距離為d2,則d1+d2的最小值為( 。
A.$\frac{5\sqrt{2}}{2}$+2B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,A,B,C所對的邊分別為a,b,c,A為鈍角,sinBcosC+cosBsinC=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求A;
(Ⅱ)若a=2$\sqrt{7}$且b>c,△ABC的面積為2$\sqrt{3}$,求邊b和c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若雙曲線的離心率為$\sqrt{2}$,則雙曲線的兩條漸近線的夾角是90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一段繁忙的公路有大量汽車通過,設(shè)每一輛汽車在一天的某段時(shí)間內(nèi)出事故的概率為0.00001,若每天在該段時(shí)間內(nèi)有1000輛汽車通過,則出事故的車輛數(shù)不少于2的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的實(shí)軸的兩個(gè)端點(diǎn)為A、B,P為此雙曲線上的動點(diǎn),直線AP、BP的斜率均存在,分別為k1、k2.當(dāng)表達(dá)式k1k2-2(ln|k1|+ln|k2|)取得最小值時(shí),對應(yīng)的雙曲線的離心率為(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若xy滿足|x|+|y|≤1.則z=2x-y的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,a,b,c分別是角A,B,C所對的邊,且tanB+tanC=$\frac{2sinA}{cosB}$,a+b=3ab.
(1)求角C的值;
(2)若c=3,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案