【題目】已知二次函數(shù)滿足,且方程有兩個(gè)相等的實(shí)數(shù)根

1)求函數(shù)的解析式;

2)若上的奇函數(shù),且時(shí),,求的解析式;

3)若不等式對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

【答案】1fx)=x2+x+1.(2

3

【解析】

1)利用及方程有兩個(gè)相等的實(shí)數(shù)根,列得關(guān)于,的方程,解出即可;

2)由上的奇函數(shù),得到,再利用奇偶性求得時(shí)的,寫成分段函數(shù)形式即可.

3)先利用二次函數(shù)性質(zhì)求得函數(shù)fx)的最大值,再利用判別式解得c得范圍.

1)∵二次函數(shù)滿足,

∴4a+2b=0

又方程有兩個(gè)相等的實(shí)數(shù)根,

ax2+b1x0,∴=(b120

fx)=x2+x+1

2)∵上的奇函數(shù),∴當(dāng)時(shí),,

時(shí),,

,則,∴,∵上的奇函數(shù),,

綜上,

3)若不等式對(duì)一切實(shí)數(shù),恒成立,則

fx)=x2+x+1=,

,即對(duì)一切實(shí)數(shù)恒成立,

,即,解得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李大學(xué)畢業(yè)后選擇自主創(chuàng)業(yè),開發(fā)了一種新型電子產(chǎn)品.2019年9月1日投入市場(chǎng)銷售,在9月份的30天內(nèi),前20天每件售價(jià)(元)與時(shí)間(天,)滿足一次函數(shù)關(guān)系,其中第一天每件售價(jià)為63元,第10天每件售價(jià)為90元;后10天每件售價(jià)均為120元.已知日銷售量(件)與時(shí)間(天)之間的函數(shù)關(guān)系是.

(1)寫出該電子產(chǎn)品9月份每件售價(jià)(元)與時(shí)間(天)的函數(shù)關(guān)系式;

(2)9月份哪一天的日銷售金額最大?并求出最大日銷售金額.(日銷售金額=每件售價(jià)日銷售量).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果存在函數(shù)為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)線性覆蓋函數(shù).給出如下四個(gè)結(jié)論:

①函數(shù)存在線性覆蓋函數(shù)

②對(duì)于給定的函數(shù),其線性覆蓋函數(shù)可能不存在,也可能有無(wú)數(shù)個(gè);

為函數(shù)的一個(gè)線性覆蓋函數(shù);

④若為函數(shù)的一個(gè)線性覆蓋函數(shù),則

其中所有正確結(jié)論的序號(hào)是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)解方程

2)令,求的值.

3)若是定義在上的奇函數(shù),且對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.

(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;

(2)求滿足的點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是菱形,的中點(diǎn),點(diǎn)在側(cè)棱上.

(1)求證:平面

(2)若的中點(diǎn),求證:平面

(3)若,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線的斜率為,直線與橢圓C交于兩點(diǎn).點(diǎn)為橢圓上一點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號(hào)為7,2008年年份代號(hào)為8,依次類推.經(jīng)連續(xù)統(tǒng)計(jì)9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合的關(guān)系):

年份代號(hào)(

7

8

9

10

11

12

13

14

15

當(dāng)年收入(千萬(wàn)元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)試預(yù)測(cè)2020年該企業(yè)的收入.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù);

(1)討論的極值點(diǎn)的個(gè)數(shù);

(2)若,恒成立,的最大值

參考數(shù)據(jù):

1.6

1.7

1.8

4.953

5.474

6.050

0.470

0.531

0.588

查看答案和解析>>

同步練習(xí)冊(cè)答案