6.在樣本頻率分布直方圖中,共有9個(gè)小長方形,若中間一個(gè)長方形的面積等于其他8個(gè)小長方形的面積和的$\frac{2}{5}$,且樣本容量為280,則中間一組的頻數(shù)為80.

分析 根據(jù)頻率分布直方圖中頻率和為1,求出中間小長方形的頻率,即可求出對應(yīng)的頻數(shù).

解答 解:根據(jù)頻率和為1,設(shè)中間一個(gè)長方形的面積為a,
則其他8個(gè)小長方形的面積和為$\frac{5}{2}$a,
∴a+$\frac{5}{2}$a=1,
解得a=$\frac{2}{7}$,
∴中間一組的頻數(shù)為280×$\frac{2}{7}$=80.
故答案為:80.

點(diǎn)評 本題考查了頻率分布直方圖的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圓心為(1,1)且在直線x+y=4上截得的弦長為2$\sqrt{2}$的圓的方程是(  )
A.(x-1)2+(y-1)2=10B.(x-1)2+(y-1)2=20C.(x-1)2+(y-1)2=2D.(x-1)2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知sinα+cosα=-$\frac{1}{3}$,其中0<α<π,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.通過計(jì)算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1.
將以上各等式兩邊分別相加,得
(n+1)3-13=3(12+22+…+n2)+3(1+2+3+…+n)+n;
即12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).
類比上述求法,請你求出13+23+33+…+n3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.2014年小明以優(yōu)異的成績研究生畢業(yè),并獲得一份待遇優(yōu)厚的工作.從2015年起,每年元月在銀行存入5萬元,打算連續(xù)存十年,銀行年利率為r(按復(fù)利計(jì)算),到2025年元月取出的本利之和是$\frac{5(1{+r)}^{11}-5-5r}{r}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}滿足a1=4,2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,n∈N*
(1)證明:數(shù)列{$\frac{1}{\sqrt{{a}_{n}}-1}$}是等差數(shù)列;
(2)求使lga1+lga2+…+lgan>4成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.有兩個(gè)函數(shù)f(x)=asin(kx+$\frac{π}{3}$),g(x)=bcos(2kx-$\frac{π}{3}$)(k>0),它們的周期之和為$\frac{3π}{2}$,且f($\frac{π}{2}$)=g($\frac{π}{2}$),f($\frac{π}{4}$)=-$\sqrt{3}$•g($\frac{π}{4}$)+1,求k,a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)集合A={x|a≤x≤a+2}與B={x|x<1或x>4},且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}中,a1=3,a2=5,且對于任意的大于2的正整數(shù)n,有an=an-1-an-2則a11=-5.

查看答案和解析>>

同步練習(xí)冊答案