【題目】已知函數(shù)fx)=cos2x+2sinsinx).

)求fx)的單調(diào)遞增區(qū)間;

)求函數(shù)yfx)的對(duì)稱軸方程,并求函數(shù)fx)在區(qū)間[,]上的最大值和最小值.

【答案】[,]kZ; )最小值為﹣1,最大值為

【解析】

fx)=cos2x+2sinsinx

cos2xcossin2xsin2cosxsinx

cos2xsin2x+sin2xcos2xsin2x+cos2x

cos2xsin2xcos2x),

2π≤2x2,kZxkZ,

即函數(shù)的單調(diào)遞增區(qū)間為[],kZ

)由2xx,即函數(shù)的對(duì)稱軸方程為x,kZ,

當(dāng)時(shí),2xπ,2x

所以當(dāng)2xπ,即時(shí),函數(shù)fx)取得最小值,最小值為fx)=cosπ=﹣1

當(dāng)2x,時(shí),函數(shù)fx)取得最大值,最大值為fx)=cos

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).下列命題為真命題的是(

A.函數(shù)是周期函數(shù)B.函數(shù)既有最大值又有最小值

C.函數(shù)的定義域是,且其圖象有對(duì)稱軸D.對(duì)于任意,單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某機(jī)械廠要將長(zhǎng),寬的長(zhǎng)方形鐵皮進(jìn)行裁剪.已知點(diǎn)的中點(diǎn),點(diǎn)在邊上,裁剪時(shí)先將四邊形沿直線翻折到處(點(diǎn)分別落在直線下方點(diǎn),處,交邊于點(diǎn),再沿直線裁剪.

1)當(dāng)時(shí),試判斷四邊形的形狀,并求其面積;

2)若使裁剪得到的四邊形面積最大,請(qǐng)給出裁剪方案,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近一段時(shí)間來(lái),由于受非洲豬瘟的影響,各地豬肉價(jià)格普遍上漲,生豬供不應(yīng)求。各大養(yǎng)豬場(chǎng)正面臨巨大挑戰(zhàn),目前各項(xiàng)針對(duì)性政策措施對(duì)于生豬整體產(chǎn)能恢復(fù)、激發(fā)養(yǎng)殖戶積極性的作用正在逐步顯現(xiàn).

現(xiàn)有甲、乙兩個(gè)規(guī)模一致的大型養(yǎng)豬場(chǎng),均養(yǎng)有1萬(wàn)頭豬.根據(jù)豬的重量,將其分為三個(gè)成長(zhǎng)階段如下表.

豬生長(zhǎng)的三個(gè)階段

階段

幼年期

成長(zhǎng)期

成年期

重量(Kg

根據(jù)以往經(jīng)驗(yàn),兩個(gè)養(yǎng)豬場(chǎng)內(nèi)豬的體重均近似服從正態(tài)分布.

由于我國(guó)有關(guān)部門(mén)加強(qiáng)對(duì)大型養(yǎng)豬場(chǎng)即將投放市場(chǎng)的成年期的豬監(jiān)控力度,高度重視其質(zhì)量保證,為了養(yǎng)出健康的成年活豬,甲、乙兩養(yǎng)豬場(chǎng)引入兩種不同的防控及養(yǎng)殖模式.已知甲、乙兩個(gè)養(yǎng)豬場(chǎng)內(nèi)一頭成年期豬能通過(guò)質(zhì)檢合格的概率分別為,

(1)試估算各養(yǎng)豬場(chǎng)三個(gè)階段的豬的數(shù)量;

(2)已知甲養(yǎng)豬場(chǎng)出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元;乙養(yǎng)豬場(chǎng)出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元.記為甲、乙養(yǎng)豬場(chǎng)各出售一頭成年期豬所得的總利潤(rùn),求隨機(jī)變量的分布列,假設(shè)兩養(yǎng)豬場(chǎng)均能把成年期豬售完,求兩養(yǎng)豬場(chǎng)的總利潤(rùn)期望值.

(參考數(shù)據(jù):若,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A與定圓外切,且與軸相切.

1)求動(dòng)圓圓心的軌跡的方程;

2)過(guò)作直線軸右側(cè)的部分相交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.

(。┣笾本軸的交點(diǎn)的坐標(biāo);

(ⅱ)若,求的內(nèi)切圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】更相減損術(shù)是《九章算術(shù)》中介紹的一種用于求兩個(gè)正整數(shù)的最大公約數(shù)的方法,該方法的算法流程如圖所示,根據(jù)程序框圖計(jì)算,當(dāng)a35,b28時(shí),該程序框圖運(yùn)行的結(jié)果是(  。

A.a6b7B.a7,b7C.a7,b6D.a8,b8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A01),B0,﹣1),M(﹣1,0),動(dòng)點(diǎn)P為曲線C上任意一點(diǎn),直線PA,PB的斜率之積為,動(dòng)直線l與曲線C相交于不同兩點(diǎn)Qx1,y1),Rx2y2),其中y10y20且滿足

1)求曲線C的方程;

2)若直線lx軸相交于一點(diǎn)N,求N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若,當(dāng)時(shí),解關(guān)于的不等式;

2)證明:有且僅有2個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線,動(dòng)圓P與圓M相外切,且與直線l相切.設(shè)動(dòng)圓圓心P的軌跡為E.

1)求E的方程;

2)若點(diǎn)A,BE上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且,求證:直線AB恒過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案