分析 (1)根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出極值,
(2)分別求出端點(diǎn)值和極值,即可求出最值.
解答 解:(1)∵f(x)=13x3-4x+6,
∴f′(x)=x2-4,
令f′(x)=0,解得x=-2,或2,
當(dāng)f′(x)>0,即x<-2或x>2,函數(shù)f(x)單調(diào)遞增,
當(dāng)f′(x)<0,即-2<x<2,函數(shù)f(x)單調(diào)遞減,
故當(dāng)x=-2時(shí),函數(shù)有極大值,即f(-2)=-83+8+6=343,
故當(dāng)x=2時(shí),函數(shù)有極小值,即f(2)=83-8+6=23
(2)由(1)可知,f(x)在[-3,-2)或[2,4]上單調(diào)遞增,在(-2,2)上單調(diào)遞減,
∵f(-3)=-9+12+6=9,f(4)=643-16+6=343,且由(1)f(-2)=343,f(2)=83-8+6=23,
∴函數(shù)在區(qū)間[-3,4]上的最大值為343與最小值23
點(diǎn)評 本題考查了導(dǎo)數(shù)和函數(shù)的極值最值的關(guān)系,掌握求最值的步驟是關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=cosx,g(x)=2 | B. | f(x)=log2(x2−2x+5),g(x)=sinπ2x | ||
C. | f(x)=√4−x2,g(x)=34x+154 | D. | f(x)=x+2x,g(x)=lnx+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|2≤x≤3} | B. | {x|1≤x≤2} | C. | {x|1≤x≤√3} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 14 | C. | 12 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com