6.函數(shù)y=log4(x+2)的定義域為( 。
A.{x|x≥-4}B.{x|x>-4}C.{x|x≥-2}D.{x|x>-2}

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則x+2>0,即x>-2,
即函數(shù)的定義域為{x|x>-2},
故選:D.

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.降水量是指水平地面上單位面積的降水的深度,用上口直徑為38cm,底面直徑為24cm,深為35cm的圓臺形水桶(軸截面如圖)來測量降水量,如果在一次降雨過程中,用此桶盛得的雨水正好是桶深的$\frac{1}{7}$,求這次降雨的降水量(精確到1mm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知sinα+cosα=$\frac{\sqrt{2}}{3}$,α∈(0,π).
(1)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值;
(2)若cosβ+sinβ=-$\frac{\sqrt{2}}{3}$,β∈(0,π),求角α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an},{bn},其中a1=l,an=$\frac{1}{b_n}+\frac{1}{2}$,$\frac{4}{{{b_{n+1}}{b_n}}}=\frac{6}{{{b_{n+1}}}}-\frac{3}{b_n}$,(n∈N* )
(1)求證:數(shù)列{bn-$\frac{4}{3}$}是等比數(shù)列;
(2)求數(shù)列{bn}的通項公式及數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求由A(1,2)、B(0,1)、C(-2,3)三點所確定的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某地最近十年糧食需求量逐年上升,如表是部分統(tǒng)計數(shù)據(jù):
年份20022004200620082010
需求量(萬噸)236246257276286
(Ⅰ)利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方程y=bx+a;
(Ⅱ)利用(Ⅰ)中所求出的直線方程預(yù)測該地2012年的糧食需求量.
提示:線性回歸方程y=a+bx,$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.“a-1>0”是“a>1”的條件充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨即抽取該流水線上40件產(chǎn)品作為樣本算出他們的重量(單位:克)重量的分組區(qū)間為(490,495],(495,500],…(510,515],由此得到樣本的頻率分布直方圖,如圖所示.
(1)根據(jù)頻率分布直方圖,求重量不超過500克的產(chǎn)品數(shù)量;
(2)在上述抽取的40件產(chǎn)品中任取2件,設(shè)Y為重量不超過500克的產(chǎn)品數(shù)量,求Y的分布列及期望;
(3)從流水線上任取5件產(chǎn)品,求恰有2件產(chǎn)品合格的重量不超過500克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知Rt△OAB中,∠AOB=90°,OA=3,OB=2,M在OB上,且OM=1,N在OA上,且ON=1,P為AM與BN的交點,求∠MPN.(要求用向量求解).

查看答案和解析>>

同步練習(xí)冊答案