1.已知直線y=kx-1與雙曲線x2-y2=4.
(1)若直線與雙曲線沒有公共點(diǎn),求k的取值范圍;
(2)若直線與雙曲線只有一個(gè)公共點(diǎn),求k的取值范圍.

分析 (1)用代數(shù)法,先聯(lián)立方程,消元后得到一個(gè)方程,即判別式小于零,即可求出k的范圍
(2)用代數(shù)法,先聯(lián)立方程,消元后得到一個(gè)方程,先研究相切的情況,即判別式等于零,再研究與漸近線平行的情況.

解答 解:(1)由題意令$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=4}\\{y=kx-1}\end{array}\right.$,得x2-(kx-1)2=4,整理得(1-k2)x2+2kx-5=0
當(dāng)1-k2=0,k=±1時(shí),顯然符合條件;
當(dāng)1-k2≠0時(shí),有△=20-16k2<0,解得k<-$\frac{\sqrt{5}}{2}$或k>$\frac{\sqrt{5}}{2}$.
綜上,k取值范圍是k=±1,k<-$\frac{\sqrt{5}}{2}$或k>$\frac{\sqrt{5}}{2}$.
(2)由(1)△=0,△=20-16k2=0
∴k=±$\frac{\sqrt{5}}{2}$;
又注意直線恒過點(diǎn)(0,-1)且漸近線的斜率為±1,與漸近線平行時(shí)也成立,
∴k=±$\frac{\sqrt{5}}{2}$;k=±1

點(diǎn)評(píng) 本題主要考查直線與雙曲線的位置關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)的圖象如圖所示,則f(x)的極大值點(diǎn)為(  )
A.$\frac{1}{2}$B.1C.1.7D.2.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.($\frac{4}{9}$)${\;}^{-\frac{3}{2}}$-lg$\root{8}{1000}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a=${∫}_{0}^{π}$(sinx+cosx)dx,則二項(xiàng)式($\root{3}{x}$-$\frac{1}{a\sqrt{x}}$)6的展開式中含x2項(xiàng)的系數(shù)為( 。
A.-6B.-1C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正項(xiàng)等比數(shù)列{an}:a9-a8=2a7,若存在兩項(xiàng)am,an,使得aman=64a12,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為( 。
A.$\frac{4}{3}$B.$\frac{5}{2}$C.16D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求值:$\sqrt{3}$sin$\frac{π}{12}$+cos$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a>0,且f(x)=x3-ax在[1,+∞)上是增函數(shù),則a的取值范圍是(  )
A.0<a<3B.0<a≤3C.a>3D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足線性約束條件:$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1<0}\end{array}\right.$,則目標(biāo)函數(shù)z=y-3x的取值范圍是(  )
A.$(-1,-\frac{1}{3})$B.(-3,-1)C.$(-3,\frac{1}{3}]$D.$[-3,\frac{1}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=ln(2x-x2+3)的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,3]B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案