分析 (1)用代數(shù)法,先聯(lián)立方程,消元后得到一個(gè)方程,即判別式小于零,即可求出k的范圍
(2)用代數(shù)法,先聯(lián)立方程,消元后得到一個(gè)方程,先研究相切的情況,即判別式等于零,再研究與漸近線平行的情況.
解答 解:(1)由題意令$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=4}\\{y=kx-1}\end{array}\right.$,得x2-(kx-1)2=4,整理得(1-k2)x2+2kx-5=0
當(dāng)1-k2=0,k=±1時(shí),顯然符合條件;
當(dāng)1-k2≠0時(shí),有△=20-16k2<0,解得k<-$\frac{\sqrt{5}}{2}$或k>$\frac{\sqrt{5}}{2}$.
綜上,k取值范圍是k=±1,k<-$\frac{\sqrt{5}}{2}$或k>$\frac{\sqrt{5}}{2}$.
(2)由(1)△=0,△=20-16k2=0
∴k=±$\frac{\sqrt{5}}{2}$;
又注意直線恒過點(diǎn)(0,-1)且漸近線的斜率為±1,與漸近線平行時(shí)也成立,
∴k=±$\frac{\sqrt{5}}{2}$;k=±1
點(diǎn)評(píng) 本題主要考查直線與雙曲線的位置關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 1.7 | D. | 2.7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | -1 | C. | 1 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{2}$ | C. | 16 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<3 | B. | 0<a≤3 | C. | a>3 | D. | a≥3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-1,-\frac{1}{3})$ | B. | (-3,-1) | C. | $(-3,\frac{1}{3}]$ | D. | $[-3,\frac{1}{3}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com