4.根據(jù)下列表格中的數(shù)據(jù),可以斷定方程ex-x-2=0的一個根所在的區(qū)間是(1,2).
x-10123
ex0.3712.727.3920.09
x+212345

分析 令f(x)=ex-x-2,求出選項中的端點函數(shù)值,從而由根的存在性定理判斷根的位置.

解答 解:由上表可知,
令f(x)=ex-x-2,
則f(-1)≈0.37+1-2<0,
f(0)=1-0-2=-1<0,
f(1)≈2.72-1-2<0,
f(2)≈7.39-2-2>0,
f(3)≈20.09-3-2>0.
故f(1)f(2)<0,
故答案為:(1,2).

點評 本題考查零點判定定理的應(yīng)用,二分法求方程近似解的步驟,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖(算法流程圖)的輸出值x為( 。 
   
A.13B.12C.22D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐E-ABCD中,四邊形ABCD為平行四邊形,△BCE是等邊三角形,AE⊥BE,M為CE上一點,且BM⊥平面ACE.
(Ⅰ)求證:AE⊥BC;
(Ⅱ)若AE=$\sqrt{3}$,BE=1,求三棱錐C-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在平面直角坐標系xOy中,x軸在地平面上,y軸垂直于地面,x軸、y軸上的單位長度都為1km,某炮位于坐標原點處,炮彈發(fā)射后,其路徑為拋物線y=kx-$\frac{1}{20}(1+{k^2}){x^2}$的一部分,其中k與炮彈的發(fā)射角有關(guān)且k>0.
(1)當(dāng)k=1時,求炮彈的射程;
(2)對任意正數(shù)k,求炮彈能擊中的飛行物的高度h的取值范圍;
(3)設(shè)一飛行物(忽略大。┑母叨葹4km,試求它的橫坐標a不超過多少km時,炮彈可以擊中它.(答案精確到0.1,$\sqrt{5}$取2.236)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某公司準備投入適當(dāng)?shù)膹V告費對其生產(chǎn)的產(chǎn)品進行促銷,在一年內(nèi),根據(jù)預(yù)算得某產(chǎn)品的年利潤S(萬元)與廣告費x(萬元)之間的函數(shù)解析式為S=25-($\frac{x}{4}$+$\frac{16}{x}$)(x>0),則當(dāng)該公司的年利潤最大時應(yīng)投人廣告費( 。
A.9萬元B.8萬元C.7萬元D.6萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.∫${\;}_{0}^{1}$(e2+2x)dx=e2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.計算積分∫1e$\frac{1}{x}$dx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=(6x-$\frac{3}{2}$)2tan(4x-1)+x+$\frac{3}{4}$,f($\frac{1}{2n}$)+f($\frac{1}{n}$)+f($\frac{3}{2n}$)+…+f($\frac{n-1}{2n}$)=( 。
A.nB.n-1C.$\frac{n}{2}$D.$\frac{n-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個幾何體按比例繪制的三視圖如圖所示,則該幾何體的體積為( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊答案