某家庭注重家庭理財,從2001年元旦起,每年元旦向銀行存款a萬元,年利率為r,辦理一年定期儲蓄,以后按約定自動轉(zhuǎn)存,計算此家庭到2014年元旦去取錢,所得的本利和為多少?
考點(diǎn):等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:首先確定數(shù)列為等比數(shù)列,進(jìn)一步求出前13項和.
解答: 解:所得的本利和為S=a(1+r)13+a(1+r)12+…+a(1+r)
=a(1+r)+a(1+r)2+…+a(1+r)13
=a•
(1+r)[1-(1+r)13]
1-(1+r)
=
a
r
[(1+r)14-r-1]

故答案為:
a
r
[(1+r)14-r-1]
點(diǎn)評:本題考查的知識點(diǎn):等比數(shù)列的前n項和公式及應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx+
3
cosx)
(1)求f(x)的值域和最小正周期;
(2)若對任意x∈[0,
π
6
],使得m[f(x)+
3
]+2=0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比為q的等比數(shù)列,|q|>1,令bn=an+1(n=1,2,…),若數(shù)列{bn}有連續(xù)四項在集合{-53,-23,19,37,82}中,則2q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P,Q分別為直線3x+4y-12=0與6x+8y+5=0上任意一點(diǎn),則|PQ|的最小值為(  )
A、
9
5
B、
18
5
C、
29
10
D、
29
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形的三個頂點(diǎn)是A(4,0),B(2,4),C(0,3).
(1)求AB邊的中線所在直線l1的方程;
(2)求BC邊的高所在直線l2的方程;
(3)求直線l1與直線l2的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=5,b=3,若△ABC有兩解,則角B的大小可以是(  )
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a、b、c成等比數(shù)列,非零實(shí)數(shù)x,y分別為a與b,b與c的等差中項,則下列結(jié)論正確的是( 。
A、
a
x
+
c
y
=1
B、
a
x
+
c
y
=2
C、ax+cy=1
D、ax+cy=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-7x<0,x∈N*},B={y|
4
y
N*}
中元素的個數(shù)為( 。
A、3個B、2個C、1個D、0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓
x2
25
+
y2
16
=1的左、右焦點(diǎn),P為橢圓上一點(diǎn),M是F1P的中點(diǎn),|OM|=3,則P點(diǎn)到橢圓左焦點(diǎn)的距離為( 。
A、4B、3C、2D、5

查看答案和解析>>

同步練習(xí)冊答案