【題目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:f′(x)=lnx+1,
令f′(x)<0得:0<x< ,
∴f(x)的單調(diào)遞減區(qū)間是(0, ),
令f'(x)>0得:x> ,
∴f(x)的單調(diào)遞增區(qū)間是( ,+∞)
(2)解:∵g′(x)=3x2+2ax﹣1,由題意2xlnx≤3x2+2ax+1,
∵x>0,
∴a≥lnx﹣ x﹣ 恒成立①,
設(shè)h(x)=lnx﹣ ﹣ ,
則h′(x)= ﹣ + =﹣
令h′(x)=0得:x=1,x=﹣ (舍去)
當(dāng)0<x<1時(shí),h′(x)>0;
當(dāng)x>1時(shí),h'(x)<0
∴當(dāng)x=1時(shí),h(x)有最大值﹣2,
若①恒成立,則a≥﹣2,
即a的取值范圍是[﹣2,+∞)
【解析】(1)先求出其導(dǎo)函數(shù),再讓其導(dǎo)函數(shù)大于0對應(yīng)區(qū)間為增區(qū)間,小于0對應(yīng)區(qū)間為減區(qū)間即可.(注意是在定義域內(nèi)找單調(diào)區(qū)間.)(2)已知條件可以轉(zhuǎn)化為a≥lnx﹣ x﹣ 恒成立,對不等式右邊構(gòu)造函數(shù),利用其導(dǎo)函數(shù)求出函數(shù)的最大值即可求實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在 上的函數(shù)滿足 ,當(dāng) 時(shí), .
(1)求證: 為奇函數(shù);
(2)求證: 為 上的增函數(shù);
(3)解關(guān)于 的不等式: (其中 且 為常數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 是上、下底邊長分別為2和6,高為 的等腰梯形,將它沿對稱軸 折疊,使二面角 為直二面角.
(1)證明: ;
(2)求二面角 的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分別是AD,PB的中點(diǎn).
(Ⅰ)求證:PD∥平面OCM;
(Ⅱ)若AP與平面PBD所成的角為60°,求線段PB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100],若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是( )
A.45
B.50
C.55
D.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長是 .
(1)用寬 (單位 )表示所建造的每間熊貓居室的面積 (單位 );
(2)怎么設(shè)計(jì)才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(2,m)為其上一點(diǎn),且|MF|=4.
(1)求p與m的值;
(2)如圖,過點(diǎn)F作直線l交拋物線于A、B兩點(diǎn),求直線OA、OB的斜率之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)市場需要,某地準(zhǔn)備建一個(gè)圓形生豬儲備基地(如右圖),它的附近有一條公路,從基地中心O處向東走1 km是儲備基地的邊界上的點(diǎn)A,接著向東再走7 km到達(dá)公路上的點(diǎn)B;從基地中心O向正北走8 km到達(dá)公路的另一點(diǎn)C.現(xiàn)準(zhǔn)備在儲備基地的邊界上選一點(diǎn)D,修建一條由D通往公路BC的專用線DE,求DE的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求分別滿足下列條件的直線l的方程:
(1)斜率是,且與兩坐標(biāo)軸圍成的三角形的面積是6;
(2)經(jīng)過兩點(diǎn)A(1,0)、B(m,1);
(3)經(jīng)過點(diǎn)(4,-3),且在兩坐標(biāo)軸上的截距的絕對值相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com