A. | 12 | B. | 10 | C. | 8 | D. | 6 |
分析 根據(jù)對數(shù)的基本運算法則,得到2a+b=ab,然后根據(jù)基本不等式即可求出2a+b的最小值.
解答 解:∵log4(2a+b)=log2($\sqrt{ab}$),
∴l(xiāng)og4(2a+b)=log4(ab),
∴2a+b=ab>0,
∵2a+b=ab=$\frac{1}{2}$•2a•b≤$\frac{1}{2}$($\frac{2a+b}{2}$)2=($\frac{2a+b}{8}$)2,
∴2a+b≥8,
當(dāng)且僅當(dāng)2a=b時,取等號.
∴2a+b的最小值為8,
故選:C.
點評 本題主要考查式子的最值,利用對數(shù)的運算法則和基本不等式是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線x=$\frac{π}{12}$對稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對稱 | ||
C. | 關(guān)于點($\frac{π}{12}$,0)對稱 | D. | 關(guān)于點($\frac{5π}{12}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{4}$] | B. | (0,$\frac{1}{4}$] | C. | (-∞,0]∪[$\frac{1}{4}$,+∞) | D. | (-∞,0)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com