分析 (1)求出AD⊥CD,證明CD∥平面PAD,而平面PAD∥平面BEF,即可得出CD⊥平面BEF,于是平面BEF⊥平面PCD;
(2)以A為原點建立坐標系,求出兩平面的法向量,則平面PBC與平面PAD所成的二面角的余弦值等于法向量的夾角余弦值的絕對值.
解答 證明:(1)∵PC=2BD,∴∠PDC=90°,
∵AB是△PCD的中位線,
∴CD∥AB,AB⊥PA,AB⊥AD,
又PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴AB⊥平面PAD,
∴CD⊥平面PAD.
∵AB$\stackrel{∥}{=}$DE,
∴四邊形ABED是平行四邊形,∴BE∥AD,
又EF為△PCD的中位線,∴EF∥PD.
又BE?平面BEF,EF?平面BEF,AD?平面PAD,PD?平面PAD,BE∩EF=E,PD∩AD=D,
∴平面PAD∥平面BEF,
∴CD⊥平面BEF,
又CD?平面PCD,
∴平面BEF⊥平面PCD.
(2)以A點為原點,以AB為x軸,AD為y軸,面ABCD的垂線為z軸建立空間直角坐標系,
由(1)知BA⊥平面PAD,所以z軸位于平面PAD內,所以∠PAz=30°,
∴P(0,-1,$\sqrt{3}$),A(0,0,0),B($\sqrt{2}$,0,0),C(2$\sqrt{2}$,2,0),
∴$\overrightarrow{PB}$=($\sqrt{2}$,1,-$\sqrt{3}$),$\overrightarrow{BC}$=($\sqrt{2}$,2,0),
設平面PBC的一個法向量為$\overrightarrow{n}$=(x,y,z),則$\overrightarrow{n}•\overrightarrow{PB}=0$,$\overrightarrow{n}•\overrightarrow{BC}=0$.
∴$\left\{\begin{array}{l}{\sqrt{2}x+y-\sqrt{3}z=0}\\{\sqrt{2}x+2y=0}\end{array}\right.$,令y=1,得$\overrightarrow{n}$=(-$\sqrt{2}$,1,-$\frac{\sqrt{3}}{3}$)
又$\overrightarrow{AB}$=($\sqrt{2}$,0,0)為平面PAD的一個法向量,
∴cos<$\overrightarrow{n},\overrightarrow{AB}$>=$\frac{\overrightarrow{n}•\overrightarrow{AB}}{|\overrightarrow{n}||\overrightarrow{AB}|}$=$\frac{-2}{\sqrt{2}•\sqrt{\frac{10}{3}}}$=-$\frac{\sqrt{15}}{5}$,
又平面PBC與平面PAD所成的二面角的平面角為銳角,
所以平面PBC與平面PAD所成的二面角的余弦值為$\frac{\sqrt{15}}{5}$.
點評 本題考查了線面垂直,面面平行的判定與性質,二面角的計算,空間向量在立體幾何中的應用,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $m≤\frac{7}{3}$ | B. | m≥-1 | C. | $m≤-1或m≥\frac{7}{3}$ | D. | $-1≤m≤\frac{7}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{25}{8}$ | D. | $\frac{25}{16}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12 | B. | 10 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com