【題目】已知函數(shù)f(x)的定義域?yàn)閇7,15),設(shè)f(2x+1)的定義域?yàn)锳,B={x|x<a或x>a+1},若A∪B=R,求實(shí)數(shù)a的取值范圍.

【答案】解:∵函數(shù)f(x)的定義域?yàn)閇7,15),∴由7≤2x+1<15,得3≤x<7,
即A={x|3≤x<7},又B={x|x<a或x>a+1},且A∪B=R,
,解得:3≤a<6
【解析】由f(x)的定義域求出f(2x+1)的定義域得到A,再由A∪B=R列關(guān)于a的不等式組得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識,掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=log 為奇函數(shù),a為常數(shù),
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;
(3)若x∈[3,4],不等式f(x)>( x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓的上頂點(diǎn)作直線交拋物線兩點(diǎn), 為原點(diǎn).

①求證: ;

②設(shè)、分別與橢圓相交于兩點(diǎn),過原點(diǎn)作直線的垂線,垂足為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大理石工廠初期花費(fèi)98萬元購買磨大理石刀具,第一年需要各種費(fèi)用12萬元,從第二年起,每年所需費(fèi)用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,離心率,它的長軸長等于圓的直徑.

(1)求橢圓 的方程;

(2)若過點(diǎn)的直線交橢圓兩點(diǎn),是否存在定點(diǎn) ,使得以為直徑的圓經(jīng)過這個(gè)定點(diǎn),若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在[﹣1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣1,0]時(shí)的解析式f(x)= (a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面, 直線, 內(nèi)不同的兩點(diǎn), 內(nèi)不同的兩點(diǎn),且直線分別是線段的中點(diǎn),下列判斷正確的是( )

A. 當(dāng)時(shí), 兩點(diǎn)不可能重合

B. 兩點(diǎn)可能重合,但此時(shí)直線不可能相交

C. 當(dāng)相交,直線平行于時(shí),直線可以與相交

D. 當(dāng)是異面直線時(shí),直線可能與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)結(jié)論正確的個(gè)數(shù)為( )

①小趙、小錢、小孫、小李到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件=“4個(gè)人去的景點(diǎn)不相同”,事件 “小趙獨(dú)自去一個(gè)景點(diǎn)”,則;

②設(shè)函數(shù)存在導(dǎo)數(shù)且滿足,則曲線在點(diǎn)處的切線斜率為-1;

③設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值分別為;

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,(a>0).
(1)當(dāng)a=2時(shí),證明函數(shù)f(x)不是奇函數(shù);
(2)判斷函數(shù)f(x)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;
(3)若f(x)是奇函數(shù),且f(x)﹣x2+4x≥m在x∈[﹣2,2]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案